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A Scalar Gravitation Theory in Absolute Space-Time

J-P. Wesley

Abstract

Poisson’s equation for the Newtonian gravitational potential is extended to include the mass
equivalent of the field energy iself as part of the source mass. Time retardation is introduced
by converting Poisson’s equation to a wave equation with a time-dependent source.
Neglecting time retardation, about 40 percent of the unaccounted portion of the precession of
the perihelion of Mercury is predicted. The gravitational red shift, the slowing of the speed
of light, and the bending of a light ray in a gravitational field follow from Newtonian
gravitation and the behavior of photons. Gravitational effects are generally smaller than for
Newtonian gravitation. There is no limit, such as the Chandrasekhar limit, for the size of
gravitating bodies; so super-massive bodies, being admissible, may account for the missing
mass in the universe and the origin of quasars and galaxies. The cosmological red shift is
obtained as a gravitational effect, the Hubble constant predicted being in reasonable
agreement with observational estimates. According to this theory, the cosmological red shift
is not a Doppler shift, the untverse is not expanding, the big bang never happened, and the
universe must be in steady-state equilibrium.
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1. INTRODUCTION

A better gravitation theory is needed because general relativity suffers
from many difficulties:

Newtonian gravitation and the photon nature of light; they also are
not tests for the success of general relativity,

(8) The weak field limit of general relativity yields special relativity,
which is now known to be false. (V9

(9) The Chandrasekhar limit® prohibits super-massive bodies (black
holes) which may account for the missing mass® needed to hold
fast-moving galaxies in clusters and which may account for the
origin of quasars and galaxies.

(10) The cosmological red shift is not derived by general relativity as a

gravitational effect,

(1) The Schwarzschild singularity, occurring in empty space, violates
the requirement of observability, since no actual physical entity
that can be observed becomes infinite.

{2) The equivalence of gravitating and accelerating frames would
seem to say that a stationary charge in a gravitational field should
appear to move or to radiate without any source of energy.

(3) The metricization of the gravitational field, but not other force
fields, violates symmetry. It would seem that the gravitational
force should not be properly measurable against other forces.

(4) Covariance and equivalence violate Mach’s principle that accelera-
tions are determined by all of the matter in the universe and not
just the local distributions of matter and fields.

(5) The apparent prediction of the anomalous portion of the
precession of the perihelion of Mercury may be merely fortuitous,
since it depends upon only a single isolated situation or data point.
Also, a single data point involving possible unknown features

The gravitational theory proposed here is based upon the necessary
logical extension of Newton’s gravitation to include mass-energy equiva-
lence. In particular, the mass equivalent of the gravitational field energy is
included as part of the source mass. Poisson’s equation for the Newtonian
gravitational potential @ is generalized to include the mass equivalent of
the gravitational field-energy-per-unit-volume 17,

W = —(V9)%/84G, )

cannot establish a general theory.

(6) The gravitational red shift, being easily predicted using Newtonian
gravitation and the photon nature of light, is not a test for the
success of general relativity.

(7) The curvature of a light ray and the slowing down of the speed of
light in a gravitational field may also be predicted using

where G is the universal gravitational constant, yielding

V20 = —4nGp + (VO)* /24, 2)

where p is the material mass density and ¢ is the velocity of light (the
round trip phase velocity in free space). It may be noted from the classical
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derivation of Eq. (1) that W is just the self-energy-per-unit-volume of the
material mass distribution p.

This result (2) may be linearized by introducing a new gravitational
field potential ¥ defined by

o=-2nV. 3)
Substituting Eq. (3) into (2) yields the desired linear result as
VY = 2Gp¥ /. @)

The proposed theory is succinctly stated by Eq. (2), or its equivalent
Eq. (4). The consequences derived from Eq. (2) or (4) are presented
below.

2. GENERALIZATION TO INCLUDE TIME RETARDATION
Time retardation can be introduced by generalizing Eq. (2) to the wave
equation
V20 — 820/%2 = —daGo — (0973022 + (V&) 28,  (5)
where the gravitational field energy has been taken as
(1/87G)[(30/3t)2/¢ — (V@Y (6)

the minus sign being taken in agreement with Eq. (1). Using Eq. (3) yields
the wave equation for ¥ as

V¥ — 220/ 2¢ = 2aGol Y. )
This Eq. (7) can also be written in the integral form
Y, £) = (G/28) fv, (0¥ e/ )Y ®)

where retarded values occur in the integrand,
P = 0(r's t — R/c)and ¥, = ¥(r', ¢t — R/c), 9
and
R=1r—r] (10)

It is clear that Eq. (7) predicts scalar longitudinal gravity waves of
velocity ¢. For example, in regions where p = 0, Eq. (7) predicts free
space gravity waves,

Only static source distributions will be considered in this paper where
Eq. (4) is sufficient.

3. THE TOTAL MASS

Since the present theory extends the concept of mass to include the mass
equivalent of the gravitational field energy itself, it is convenient to define
a fotal mass M in a volume V as

M= fv p¥dr, (11)

where p is the material mass density. When ¥ = 1 and @ = 0, Eq. (11)
yields the material mass in , as it should.

It may be seen, using Eq. (4), that this definition (11) for the total mass
satisfies Gauss’s law; thus,

M = (H2qG) fs(a\p/an)ds, (12)

where S is the surface enclosing the volume ¥ and n is the outward drawn
normal to the surface.
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4. FIELD OF A SPHERE OF UNIFORM MATERIAL MASS

Solving Eq. (4) for the case when the material mass density p is constant
within a sphere of radius R and zero outside subject to the boundary
conditions that ¥ and V¥ are continuous across r = R, yields

{sech(,BR) sinh(Br)/Br  forr = R,

1 — GM/22r
where B and M are constants defined by
2 = 20Gp/ and M = (2¢R/G)[1 — tanh(BR)/BR].  (14)
It may be noted that M is the total mass satisfying Eq. (11).

forr Z R, (13)

For the case when f is small, which is true for ordinary material mass
densities, the result (13) reduces to

¥l - 0y/2° (15)
where ®, is the ordinary classical Newtonian gravitational potential given
by

forr = R,

{(GMO/ZR)(B» — /RY
0, =

GMy/r forr Z R, (16)

where M, is the material mass of the sphere.

5. AN INTEGRAL EQUATION

FOR THE GRAVITATIONAL POTENTIAL

For a prescribed static material mass density distribution p, the
gravitational potential from Eq. (4) [and, thus, ® from Eq. (3)] may be
obtained in principle as readily as the gravitational potential in Newtonian
theory. It is assumed that appropriate solutions to Eq. (4) are for ¥ and
V¥ continuous everywhere.

It is useful to reformulate Eq. (4) as an integral equation. Considering -
the Green’s function I' defined by V

VT = —4nd(r — ¥), an

where 8(r — 1) is a delta function,
F'=Up-rl (18)

Multiplying Eq. (4) by T and Eq. (17) by (¥ — 1), subtracting, and
integrating over all space, noting that I and 8I'/3r vanish on the sphere at
infinity, the desired integral equation becomes

) = 1 - (G129 f ()T, 1) (19)

By substltutmg the entire right side of Eq. (19) back into (19) under the i
integral sign, using Eq. (18), and iterating the procedure yields the series

solution
Ry
e — rli

G [ole) 4, f ) g ..
4t e - r Ir, — 1] (20)
Tt may be seen that the second term on the right of Eq (20) is just the

classical Newtonian potential ®, multiplied by (—1/ 2¢%). Successive terms
in the series are of the order of magnitude of successive powers of the
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small quantity G/2¢% This series solution (20) reveals the important fact
that the gravitational potential will be less than the classical Newtonian
potential and that all the effects of gravitation will be less than the effects
predicted by classical Newtonian theory. No singularities such as the
Schwarzschild singularity can possibly arise. In fact, it may be readily
deduced from Eq. (19) that

0SV=1 1)
6. MOTION OF A PARTICLE IN A GRAVITATIONAL FIELD

The dynamics of a particle is specified by non-Newtonian mechanics
where the momentum p is given by

p = myv, (22)
where m is the material mass of the particle, v is the velocity of the
particle, and

y = 1/\/1 - (23)
The total energy of a free particle including the rest energy of mc” is then
given by

E = myd. (24)

Non-Newtonian mechanics was established by careful experimenta-
tion. &) Tt has been subsequently confirmed by countless accurate
observations. It is not appropriate to attribute empirical non-Newtonian
mechanics to sa)ecial relativity with its numerous errors and internal
inconsistencies, V¥

The force that a mass particle experiences in a gravitational field
is taken as the gradient of the gravitational potential times the non-
Newtonian mass mry to agree with classical Newtonian theory; thus,

F=mVd = —262myV In ¥, (25)

The motion of a material mass particle in a gravitation field using
non-Newtonian mechanics is then given by Newton’s second law as

d(myv)/dt = ~2¢%myV In ¥, (26)
An energy integral of the motion can be immediately obtained by
multiplying Eq. (26) by yv and integrating with respect to time; thus,
yv - d(myv)/dt = czmydy/ dt
= ~2my?v Vin ¥ = —22my’d(In W)/ dt. 7
Integrating Eq. (27) yields
y =KV (28
where K is a constant of integration, which may be identified with the
total energy by letting K = E/mc*. The desired energy integral then
becomes
E = myd¥. (29)

For a particle in free space where ¥ = 1, Eq. (29) yields Eq. (24), as it
should. For a slowly moving particle in the far field of a small material
mass M, gives

vy~ 1+ %20 and ¥ = 1 — By2P = 1 — GMy/2c%r. (30)

In this case the total energy from Eq. (29) becomes
E~md + m/2 - GmM,y/, (31

the rest energy plus kinetic energy plus gravitational potential energy.
This result (31) then further serves as a check on the correctness of
Eq. (29).

7. PRECESSION OF THE PERIHELION OF MERCURY

For a particle moving in a central force field a further integral of the
motion may be obtained in terms of the angular momentum. Taking
the vector product of r and Eq. (26) divided by y yields

v X (U/y)d(myv)/dt = — ¢ X 2mVIn ¥ = 0; 32)
since ¥ is a function of r only. Integrating Eq. (32) then yields
r X myv =L, (33)
where L, a constant of integration, is the angular momentum of the
particle. This result (33) prescribes motion in a plane normal to L.
Choosing the radius r and the angle ¢ in this plane, Eq. (33) becomes
my? & = L, (34)
where the dot over ¥ refers to time differentiation,
Using the energy integral (29) to eliminate vy yields
#9 = (PL/E)¥ (35)

Solving Eq. (29) for = -y H =4+ ‘ #9? and letting
r = (dr/d9)¥ = ¥ and using Eq. (35) to eliminate  yields an expres-
sion for r as a function of 9,

7+ = (E 21 ALY — (P LA (36)
Making the substitution r = 1/u yields
Wt = (YA - wldLh 37

For the present example of interest, the potential field ¥ of the sun may be
taken as

¥ =1 — GMu/2¢, (38)

from the second of Egs. (13) and (14), assuming the sun has a uniform
density, which should be adequate for present purposes. From the second
of Eqgs. (14) to second order smallness

M = M1 = 3GMy/5¢R), (39)

where My = 4mpR>/3 is the total material mass of the sun,
Expanding ¥ to second order smallness from Eq. (38) gives

V= 1+ QGM/ A + (5GPMP/2e)id. (40)
Substituting this result (40) into Eq. (37) then yields an equation of the
form
wt + Au — By - Ct =, (41)
where the constants 4, B, and C may be readily obtained. The solution to
Eq. (41) is
=B+ (C/A)cos A, 42)
where
A% = 1 — 5(GME/CLY*/2. (43)
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The angle necessary to return to the same value of « on the orbit is given
by
U= 2q/4. (44)

The precession in one Mercury year §  is then
80 = 2n/A — 2n = (50/2)(GME/CLY. (45)

For the present approximation it is sufficient to choose E = me* and
M =M,

This result (45) is about 40 percent of the anomalous precession. The
discrepancy may arise from the failure to take time retardation into
account, It might also arise from other causes. Predicting the result of such
an isolated example, a single data point, does not constitute a proper test
for any gravitational theory.

8. GRAVITATIONAL RED SHIFT

When a photon is created in a gravitational field-free region, rest
energy, and perhaps kinetic energy, is converted into photon energy.
When a photon is created in a gravitational field, the total mass-energy,
including the gravitational energy, must be conserved. In a gravitational
field-free region, an amount of energy mc’y is converted into photon
energy hv; thus,

v = mcty, (46)

where / is Planck’s constant and » is the photon frequency. Substituting
mc?y from Eq. (46) into Eq. (29), the total energy of a photon in a
gravitational field becomes

E =¥ or\ = (he/ E)V2 (47)

As a photon passes from infinity where » = ryor A = Ajand ¥ = lintoa
gravitational field ¥, the frequency » or wavelength A becomes

v = p/ ¥ or A = A P2 (48)

For experiments on the earth, the weak gravitational field limit may be
taken, where ¥ is given in terms of the classical Newtonian field @, as

¥ =1- 0722 (49)

Conserving energy, using Eq. (47), a fractional change in frequency or
wavelength is given by

Av/v = =AM = Ad/E (50)

where a term varying as 1/¢* has been neglected. A photon passing out of a
gravitational field is shifted toward the red, A® being negative and AA
positive. This result (50) was verified experimentally using the Mossbauer
effect 1

Actually the result (50) merely expresses the conservation of energy in a
Newtonian gravitational field. The change in the energy of a photon hAv is
equal to the change in gravitational energy (h»/ A)A®, the mass equivalent
of the photon energy kv being /w/cZ. This trivial result (50) can hardly be
viewed as a profound test of any gravitational theory other than
Newtonian gravitation.

It is important to ask what happens to the energy lost by a photon —#Av
as it climbs out of a gravitational potential energy well ~hv®/ . The
energy lost by the photon can only become deposited as gravitation-
al energy associated with the matter left behind, since only gravita-
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tional effects are involved. The consequences of this fact are far reaching.
It means that energy of a form with about the lowest capability of creating
thermodynamic order, i.e., thermal radiation, is converted to energy of the
greatest capability of creating thermodynamic order, ie., gravitational
energy that can be converted directly into work.
To pursue the matter further, the case of a uniform sphere of low
density p and radius R may be considered. The gravitational energy of the
sphere is —6GM2/5R, where My = 47pR’/3 is the material mass of
the sphere. Assuming the radiating photon deposits its energy loss by
expanding the sphere, then hAv = (6GM?/5R})AR. This constitutes a
decrease in density. The red shift of photons can in general be interpreted
as causing a reduction in the density of matter with an attendant increase
in gravitational potential energy.

9. SLOWING OF THE SPEED OF LIGHT

IN A GRAVITATIONAL FIELD

Since photons are radiated into phase space where the number of
photons radiated per energy interval is proportional to the square of the
frequency %, a flux of photons, being viewed as a continuous process of
reradiation, must be proportional to v, where v is the velocity of the
photons. Classical wave theory indicates the same conclusion. The
Poynting’s vector S and the energy density E in scalar representation(“)
are given by

S — —VUaU/at, and E = (VU2 + @QU/atY2d,  (51)

where U is the wave function and ¢ is the phase velocity. The
time-averaging Poynting’s vector, or net photon flux, for a traveling wave
U = A cos[2m(t — x/c)] is

(S) = (E)yv = VK, (52)

where K is a constant. It should be noted that the velocity of energy
propagation v, which is the photon velocity, is not in general equal to the
phase velocity c123)

Since energy is conserved for each individual photon, as discussed in the
previous section, the steady-state flux of photons in a tube of flow must be
conserved. In particular, the steady-state flux of photons at infinity in the
absence of a gravitational field must equal the steady-state flux of photons
in the same tube of flow when it passes into a gravitational field.
Consequently,

o = s, (53)

where v is the frequency and ¢ the velocity of photons at infinity, and » is
the frequency and v the velocity in a gravitational field. From Egs. (53)
and (48) then

v = c¥, (54)
In the weak field limit valid for actual observations
¥ 1 - 20/ (55)

where @ is the classical Newtonian potential. This agrees with the general
relativity prediction.m) In principle this result (55) can be checked by
observations !>

It should be noted that this result (55) follows simply from Newtonian
gravitational theory and the behavior of photons. It thus does not
constitute a test of any gravitational theory other than Newtonian
theory.
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10. DEFLECTION OF A LIGHT RAY
IN A GRAVITATIONAL FIELD

The bending of a ray of light in a gravitational field produced by a
spherical mass distribution such as the sun may be derived from the
second of Eqgs. (13) and (54) using Huygen’s principle for the refraction of
light. To within a sufficient approximation, the total angular deflection &
of a ray of light passing within a projected distance 7, of the center of the
sun is then given by

§ = f ojoo [(dv,/ 3x)/ v, ]dy, (56)

where y is a coordinate through the center of the sun parallel to the
original direction of the ray, and x is a coordinate through the center of
the sun transverse to the original direction of the ray. Since v, is always
negligible compared with o,, v, may be taken equal to v as given by Eq.

¥
(54). Thus, Eq. (56) becomes

§ = f o_ooo 4[3(In )/0x]dy. (57)

Using the second of Egs. (13) for the case where M =~ M, the material
mass, to first order in My, the material mass, to first order in GM,/ 27,
then 3(In ¥)/3x = (GMy/2c)x/+>. Thus,

8§ = (2GM/ ¢ f e+ Ay, (58)
Since for a small angular deflection 8, x = ry, Eq. (58) yields
= 4GMy/ &, (59)

This agrees with the general relativity prediction’® and with the rather
uncertain observations.

It may be noted that this result (59) can be obtained from Newtonian
gravitational theory and the behavior of photons. Thus, the bending of a
light ray around the sun does not constitute a test of any gravitational
theory other than Newton’s.

11, SUPER-MASSIVE BODIES

The present theory yields no limit for the mass of a gravitating body,
such as the small Chandrasekhar limit® derived using general relativity. A
small limit to the mass of a gravitating body is also implied by Newtonian
theory. Increasing the material mass indefinitely eventually yields a
gravitational self-energy (which is negative) equal to the rest energy of the
matter, thereby producing a body of zero total gravitational mass and
lacking any interaction with other bodies.

To examine the implications of the present theory, the particularly
simple example of a gravitating sphere of uniform matter density p may be
considered. The total gravitational mass of such a sphere is given by the
second of Eqs. (14). For a very massive body or super-massive body

V21GpR/c = BR — oo, (60)
so the second of Egs. (14) yields
M = 2'R/G = 2/G)3/4mp) MY = M. (61)

Thus the material mass M, can increase indefinitely without any
limitation on the total gravitation mass M. This general conclusion will
not be altered if some realistic equation of state for the pressure as a
function of the density for the matter is assumed. This result (61) thus

indicates that the present theory admits the possibility of super-massive
bodies.

A super-massive body may be envisioned as having a mass of the order
of a galactic mass. It may be envisioned as being contained within a small
volume, perhaps the size of the solar system. The high gravitational field
at the surface of such a super-massive body would preclude the escape of
radiant energy due to the extreme gravitational red shift. A super-massive
body would be an effective sink for all particles directed toward the body.
Such super-massive bodies would be black and would, therefore, not be
directly observable.!%

Super-massive bodies are convenient to explain certain observed
astronomical phenomena. The origin of a galaxy or a quasar can be
envisioned as arising from the collision (or near collision) of two
super-massive bodies. The gravitational pull of one body on the other
would result in tidal bulges in which the gravitational fields could be
greatly reduced permitting the release of ordinary mass and radiation.
Matter would then presumably stream into the region between the
super-massive bodies where the gravitational field would be essentially
zero. The subsequent recoil jetting of the partially depleted super-massive
bodies away from each other might then account for the two spiral arms of
a galaxy.

The high velocities of stars and galaxies in certain clusters indicate the
presence of more mass than can be visually accounted for in order to hold
the clusters together. Super-massive bodies, being black and small, could
easily account for the missing mass when appropriately situated.

The red shifts of quasars and some condensed galaxies appear to be too
great to be due solely to a cosmological red shift. There is much evidence
indicating the existence of large red shifts apart from the cosmological red
shift. 1% Anomalously high red shifts might be accounted for by the very
large gravitational red shifts of super-massive bodies. Thus, quasars
viewed as the result of the collision of two super-massive bodies would
radiate light with a large red shift due to the gravitational field of the two
super-massive bodies. Quasars, thus, need not be far away to exhibit large
red shifts. The large red shift of some galaxies might also result from
super-massive bodies being embedded in them. The apparent rotations of
the plane of galaxies, as suggested by barred spirals, might result from the
passing of a black super-massive body.

Super-massive bodies might also play a role in the large scale features of
the universe, such as galactic clusters and strings of galaxies.

12. THE COSMOLOGICAL RED SHIFT

It is generally assumed, as explicitly stated by the cosmological
principle, that at every point in the universe, the universe in the large will
appear isotropic. Thus, it is generally assumed that the universe can have
no origin, Yet there is, in fact, one unique point in the universe that may
be viewed as the origin of the universe, and that is the point at infinity.
This point can have unique properties, and it can be viewed from any
ordinary point in the universe.

Assuming that the universe in the large has a uniform mass density, it is
of some interest to obtain the gravitational field in the neighborhood of
the point at infinity for a uniform mass density p. The gravitational field
¥ is then given by the asymptotic form of Eq. (4); thus

d*idl = Py, (62)
where 82 = 27Gp/c*. The bounded solution of Eq. (62) is
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¥ = ‘Ifoeﬁﬁr, (63) predicted here is based solely upon a gravitational effect. This means that
the usual interpretation of the observed cosmological red shift as g
Doppler shift due to an expanding universe is untenable. Since the theory
says the universe is not expanding, the big-bang theory also becomes
untenable. In addition, the theory implies a steady-state universe that is
not changing with time.

According to the present theory, the physical mechanism giving rise to

where ¥, is a constant of integration.

The cosmological red shift may be obtained by considering a photon
passing through this field given by Eq. (63). Using the second of Egs. (47)
or (48) and Eq. (63), the fractional change in wavelength of the photon 2
is

2 = (opserver ~ Msource) Msource the cosmological red shift is gravitation; so the energy lost by photons

= exp[28(rsource — Tobserver)] — bs (64) proceeding toward the earth from large distances must be deposited as

. . , gravitational potential energy. Considering the fact that local gravitational

where rpycce 0 Fopgeryer 2t assumed to be in the asymptotic region. red shifts can be accounted for by assuming a local expansion of matter

Abbreviating the notation, Eq. (64) may be written as (Sec. 8 above), a similar mechanism may be assumed for the cosmological

2= AN = 2P (65) red shift. Matter distributed heterogeneously as condensed galaxies and
stars has lower gravitational energy than matter evenly or homogeneously
distributed as gas and dust. Thus, light passing through space tends to
drive the matter in the universe toward more uniform or homogeneous
distribution, thereby increasing the gravitational potential energy of the
universe.
2 = ANA = 2Br. (66) The cosmological red shift process is the opposite of the process
forming local condensations such as stars and galaxies. Stellar formation is
associated with decreasing local gravitational potential energy and the
H = 28 = 100 km/sec/Mpsec. (67) radiation of photons. The cosmological red shift phenomenon is associated
with the absorption of photons and with an “evaporation” of local
condensations of matter with a consequent increase in gravitational
potential energy. Thus, in a steady-state universe these two processes may
be assumed to be balanced against each other.

For an estimated density of the universe® of p = 1072 gm/cm’ then
B =17 % 10 %", For distances r up to the order of 10 X 10°
light-years, Br « 1, the red shift, as given by Eq. (65), may be
approximated as a linear red shift

Using the estimated value of j3, the Hubble constant becomes

Considering the large range of observational estimates of the Hubble
constant®”) and the uncertainty in estimating the density of the universe,
this value (67) may be regarded as satisfactory.

13. COSMOLOGY
The present result (66) and (67) for the cosmological red shift has
profound implications for cosmology. The cosmological red shift Received on 15 January 1988.

Bl

Résumé
L’équation de Poisson pour le potentiel gravitationnel de Newton est traitée afin dy inclure
Péquivalent massique du champ d’énergie lui-méme considéré comme faisant partie de la
masse proprement dite. Le temps-retard est introduit en transformant Uéquation de Poisson
en une équation d’onde initialement dépendante du temps. En néghgeant le temps-retard, on
peut prédire d peu prés 40 pour cent de la part inexpliquée de la précession et du périhélie de
Mercure. Le déplacement gravitationnel de la rate rouge, le ralentissement de la vitesse de la
Iumiére et Ia courbure du rayon lumineux dans un champ gravitationnel procédent de la
gravitation newtontenne et du comportement des photons. Les effets gravitationnels sont
généralement plus petits que ceux donnés par la gravitation newtonienne. Il n'y a pas de
limite, telle que celle de Chandrasekhar, pour la dimension des objets en gravitation; comme
il devient dés lors possible de prendre des corps super-massifs en considération, ils peuvent
expliquer la masse “manquante” présente dans Punivers et lorigine des quasars et des
galaxies. Le déplacement cosmologique de la rae rouge est vu comme un effet gravitationnel,
la constante de Hubble prédite correspond raisonnablement bien avec les estimations tirées
des observations. Dés lors, selon cette théorie, le déplacement de la rate rouge 'est pas dit
un effet Doppler; Punivers n'est pas en expansion; le “big-bang” n'a jamais eu lieu et
Punivers se trouve dans un régime d'équilibre continu.
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