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A Scalar Gravitation Theory in Absolute Space-Time

LP.Wesley

Abstract
Poisson’sequationfor the Newtoniangravitationalpotentialisextended toinclude the mass
equivalentof thefieldenergy itselfaspartof the sourcemass. Time retardation is introduced
by converting Poisson’s equation to a wave equation with a time-dependent source.
Neglectingtime retardation, about40percent of the unaccountedportionof theprecessionof
theperihelion ofMercury ispredicted. Thegravitational redshift, the slowing of the speed
of light, and the bending of a light my in agravitationalfieldfollow from Newtonian
gravitationandthe behaviorofphotons. Gravitationaleffects aregenerally smaller thanfor
Newtoniangravitation. There is no limit, such as the Chandrasekhar limit,for the size of
gravitating bodies; sosuper-massive bodies, being admissible, may account for the missing
mass in the universe and the origin of quasars andgalaxies. The cosmological redshift is
obtained asa gravitational effect, the Hubble constant predicted being in reasonable
agreement with observational estimates. According to this theory, the cosmological redshift
is not aDopplershift, the universe is not expanding, the big bang never happened, and the
universe must bein steady-state equilibrium.
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1. INTRODUCTION
A better gravitation theory is needed because general relativity suffers

from many difficulties:
(1) The Schwarzschild singularity, occurring in empty space, violates

the requirement of observability, since no actual physical entity
that can beobserved becomes infinite.

(2) The equivalence of gravitating and accelerating frames would
seem to say that astationary charge in agravitational field should
appear to move or to radiate without any source of energy.

(3) The metricization of the gravitational field, but not other force
fields, violates symmetry. It would seem that the gravitational
force should not beproperly measurable against other forces.

(4) Covariance andequivalence violateMach’sprinciple that accelera‑
tions are determined by all of the matter in the universe and not
just the local distributions of matter and fields.

(5) The apparent prediction of the anomalous portion of the
precessionof the perihelionofMercurymay bemerely fortuitous,
since it depends upononly asingle isolatedsituationordata point.
Also, a single data point involving possible unknown features
cannot establish ageneral theory.

(6) The gravitational redshift,beingeasily predictedusingNewtonian
gravitation and the photon nature of light, is not a test for the
success of general relativity.

(7) The curvature of a light ray and the slowingdown of the speed of
light in a gravitational field may also be predicted using

Newtoniangravitationand the photonnature of light; they also are
not tests for the success of general relativity,

(8) The weak field limit of general relativity yields special relativity,
which is now known tobefalseblml

(9) The Chandrasekhar limitmprohibits super-massive bodies (black
holes) which may account for the missing massm) needed to hold
fast-moving galaxies in clusters and which may account for the
origin of quasars and galaxies.

(10) The cosmological red shift is not derived by general relativity asa
gravitational effect.

The gravitational theory proposed here is based upon the necessary
logical extension of Newton’s gravitation to includemass-energy equiva‑
lence. In particular,the mass equivalent of the gravitational fieldenergy is
includedaspart of the source mass. Poisson’s equation for the Newtonian
gravitational potential (I) is generalized to include the mass equivalent of
the gravitational field-energy‐per‐unit‐volume W,

= ‐(v<b)2/st, (1)

where Gis the universal gravitational constant, yielding

vzo = ”4770p + (var/28, (2)

where p is the material mass density and c is the velocity of light (the
round trip phase velocity in free space). It may benoted from the classical
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derivationof Eq. (1) that Wis just the self-energy‐per-unit-volume of the
material mass distribution p.
This result (2) may be linearized by introducing a new gravitational

field potential \I/ definedby
e = ”25211111!. (3)

Substituting Eq. (3) into (2) yields the desired linear result as
v21, = 277Gp‘I’/62. (4)

The proposed theory is succinctly stated by Eq (2)0or its equivalent
Eq. (4). The consequences derived from Eq. (2) or (4) are presented
below

2. GENERALIZATIONTO INCLUDETIME RETARDATION
Time retardationcan beintroducedby generalizing Eq. (2) to the wave

equation

We ‐ 32@/c28t2 = ”417er ‐ (away/25* + (var/23, (5)
where the gravitational field energy has been taken as

(l/8wG)[(6(I>/8t)2/c2 ~ (vofl, (6)
the minus signbeing taken in agreement withEq. (1).UsingEq. (3)yields
the wave equation for ‘1’ as

W ‐ 3212/3312 =(21TGp/c2)‘1’. (7)
This Eq. (7) can also bewritten in the integral form

1/(1, t) = (6/28) (V, (pre,‘l’,e[/R)d31’, (8)

where retarded values occur in the integrand,

pret = p(r’,t - R/c) and ‘1’”, = ‘i’(r’, t - R/c), (9)
and

R = 1r ‐ 1”]. (10)

It is clear that Eq. (7) predicts scalar longitudinal gravity waves of
velocity c. For example, in regions where p = 0, Eq. (7) predicts free
space gravity waves.
Only static source distributions will beconsidered1nthis paper where

Eq. (4 )is sufficient.

3. THE TOTAL MASS
Since the present theory extends the concept of mass to include the mass

equivalent of the gravitational fieldenergy itself,it is convenient to define
a total mass M in avolume V as

M = [V p‘I/d3r, (11)

where p is the material mass density. When ‘1! = 1and (I) = 0, Eq. (11)
yields the material mass in V, asit should.
It may beseen, usingEq (4), that this definition(1l) for the total mass

satisfiesGauss3law; thus,

M=(CZ/2w) Lav/anus, (12)

where Sis the surface enclosing the volume Vand n is the outwarddrawn
normal to the surface.
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4. FIELDOFASPHEREOFUNIFORMMATERIALMASS
SolvingEq.(4)for the case when thematerialmass density pisconstant

within a sphere of radius R and zero outside subject to the boundary
conditions that ‘1' and VII are continuous across r = R, yields

{sech(,8R) sinh(Br)/Br for r E R,

1 ‐ GM/2c2r
where [3 and M are constants definedby

132 = 2nGp/c2 andM = (2c2R/G)[1 ‐ tanh(BR)/BR]. (14)

It may benoted that M is the total mass satisfying Eq. (11).

for r i R, (13)

For the case when Bis small, which is true for ordinary material mass
densities, the result (13) reduces to

11 z 1 ‐ «110m2 (15)

where (D0 is the ordinary classicalNewtoniangravitational potential given
by

for r E R,{(GM0/2R)(3 ‐ 12/18)
«10 =

GMo/r for r i R, (16)

where M, is the material mass of the sphere.

5. AN INTEGRALEQUATION
FORTHE GRAVITATIONALPOTENTIAL
For a prescribed static material mass density distribution p, the

gravitational potential from Eq (4) [and, thus,<D(Dfrom Eq. (3)] may be
obtained1nprinciple asreadily asthe gravitational potentialin Newtonian
theory It 15assumed that appropriate solutions to Eq. (4) are for ‘1’ and
VII continuous everywhere.
It is useful to reformulate Eq. (4) asanintegral equation. Considering

the Green’s function I‘ definedby
v2 = ‐4rr8(r ‐ r’), (17)

where 8(1' ~ 1") is adelta function,
F= l/lr ‐ r’l. (18) if

Multiplying Eq. (4) by T and Eq. (17) by (\I’ ‐ l), subtracting, and }
integratingover all space, noting that Tand 8T/ 81' vanish onthe sphere a
infinity, the desired integral equation becomes

111(1) 2 1‐ ((3/23) fp(r’)‘1’(r’)I‘(r§ My. (19

Bysubstituting the entire right side of Eq. (19)backmm(19)under the
integral sign, using Eq. (18), and iterating the procedure yields the series ‘
solution

__1 _ _2(:2y_<r.1_
lr - rljd3r

+109: 0(1‘1) (13"1 f‐‘ifl‘frz _ ,
4c lr ‐ rd in ‐ r2) (20)

It may be seen that the second term on the right of Eq (20)1sjust the
classicalNewtonianpotential (D0multipliedby(‐ 1/2c2). Successive terms
in the series are of the order of magnitude of successive powers of the
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small quantity G/2c2. This series solution (20) reveals the important fact
that the gravitational potential will be less than the classical Newtonian
potential and that all the effects of gravitationwill beless than the effects
predicted by classical Newtonian theory. No singularities such as the
Schwarzschild singularity can possibly arise. In fact, it may be readily
deduced from Eq. (19) that

o g \I/ g 1. (21)

6. MOTIONOFA PARTICLE IN A GRAVITATIONAL FIELD
The dynamics of a particle is specified by non-Newtonian mechanics

where the momentum p is given by

p = myv, (22)
where m is the material mass of the particle, v is the velocity of the
particle, and

y = l/\/1 ‐ 712/02. (23)

The total energy of afree particle including the rest energy of me2 is then
given by

E = mycz. (24)

Non-Newtonian mechanics was established by careful experimenta‑
tion.(7)’(8)’(9) It has been subsequently confirmed by countless accurate
observations. It is not appropriate to attribute empirical non-Newtonian
mechanics to special relativity with its numerous errors and internal
inconsistencies. H4)
The force that a mass particle experiences in a gravitational field

is taken as the gradient of the gravitational potential times the non‑
Newtonian mass myto agree with classical Newtonian theory; thus,

F = myVCl) = ‐2c2myV ln ‘1’. (25)

The motion of a material mass particle in a gravitation field using
non-Newtonian mechanics is then given by Newton’s second law as

d(myv)/dt = ‐202myV In \I’. (26)

An energy integral of the motion can be immediately obtained by
multiplyingEq. (26) byyv and integratingwith respect to time; thus,

yv -d(myv)/dt = czmydy/dt
= 42c2my2v -v 1n)1; = ‐262my2d(ln \I’)/dt. (27)

IntegratingEq. (27) yields
y=K11”, (28)

Where K is aconstant of integration, which may beidentifiedwith the
total energy by letting K = E/mcz. The desired energy integral then
becomes

E = mycz‘l’z. (29)
For aparticle in free space where ‘I’ : 1,Eq. (29) yields Eq. (24),asit

Should. For aslowly moving particle in the far field of asmall material
mass M0 gives

y z 1 + 32/262 and )1! z 1 ‐ (DO/2c2 = 1 ‐ GMO/Zczr. (30)

In this case the total energy from Eq. (29) becomes

E % mc2 1- ”1712/2 ‐ GmMO/r, (31)

the rest energy plus kinetic energy plus gravitational potential energy.
This result (31) then further serves as a check on the correctness of
Eq. (29).

7. PRECESSIONOF THE PERII-[ELION 0F MERCURY
For aparticle moving in acentral force field afurther integral of the

motion may be obtained in terms of the angular momentum. Taking
the vector product of r and Eq. (26) divided by 7yields

r x (1/y)d(myv)/dt = ‐ r x 2627er In \I/ = 0; (32)

since It is afunction of r only. IntegratingEq. (32) then yields
r X myv = L, (33)

where L, a constant of integration, is the angular momentum of the
particle. This result (33) prescribes motion in a plane normal to L.
Choosing the radius r and the angle 17in this plane, Eq. (33) becomes

myr2 i7 = L, (34)

where the dot over 1?refers to time differentiation.
Using the energy integral (29) to eliminate y yields

7212 = (ch/Eflrz. (35)
Solving Eq. (29) for v2 = c2(l ‐ 7‐2) = r2 + ‘12152 and letting
; = (dr/d0) t7 = 1’15 and usingEq. (35) to eliminate 17yields anexpres‑
sion for r asafunction of 0,

«2 + r2 = (EZ/c2L2)r4/\II4 ‐ (mch/L2)r4. (36)

Making the substitution r l/ u yields

1/2 + 112 = (52/313974 ‐ mZCZ/LZ. (37)
For the present example of interest,the potentialfield \I/ of the sunmay be
taken as

xi = 1 ‐ GMu/Zcz, (38)
from the second of Eqs. (13) and (14), assuming the sun has a uniform
density, which should beadequate for present purposes. From the second
of Eqs. (14) to second order smallness

M = M0(1 ‐ 3GM0/5c2R), (39)

where M0 2 477pR3/3 is the total material mass of the sun.
Expanding \Iffil to second order smallness from Eq. (38) gives

\1/“4 = 1 + (ZGM/c2)u + (5G2M2/2c)u2. (40)
Substituting this result (40) into Eq. (37) then yields anequation of the
form

1/2 + A204 ‐ B)2 ‐ 02 = o, (41)
where the constants A, B, and Cmay be readily obtained. The solution to
Eq. (41) is

u = B + (C/A) cos/117, (42)
'where

A2 = 1 ‐ 5(GME/c3L)2/2. (43)
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The angle necessary to return to the same value of u on the orbit is given
by

17= 27r/A. (44)

The precession in one Mercury year 8 is then

817: 277/A ‐ 2n = (57r/2)(GME/C3L)2. (45)
For the present approximation it is sufficient to choose E = mc2 and
M = M0.
This result (45) is about 40 percent of the anomalous precession. The

discrepancy may arise from the failure to take time retardation into
account. It might also arise fromother causes. Predictingthe result of such
anisolated example, asingle data point, does not constitute aproper test
for any gravitational theory.
8. GRAVITATIONAL REDSHIFT
When a photon is created in a gravitational field-free region, rest

energy, and perhaps kinetic energy, is converted into photon energy.
When aphoton is created in agravitational field, the total mass-energy,
including the gravitational energy, must beconserved. In agravitational
field-free region, anamount of energy mczy is converted into photon
energy by; thus,

hr! = mczy, (46)

where h is Planck’s constant and v is the photon frequency. Substituting
mczy from Eq. (46) into Eq. (29), the total energy of a photon in a
gravitational fieldbecomes

E = Mr? or i = (he/E)‘l/2. (47)

Asaphotonpasses from infinitywhere u= v0orA= hoand \I’ = 1intoa
gravitational field \II, the frequency vor wavelength it becomes

u = 1/0/‘1/2 or i = MP2. (43)

For experiments onthe earth, the weak gravitational field limitmay be
taken, where \l/ is given in terms of the classical Newtonian field (I), as

\1/ = l ‐ M g . (49)

Conserving energy, using Eq. (47), a fractional change in frequency or
wavelength is given by

Ayn; = ~Ai/A = Ada/n2 (50)

where atermvaryingasl/ c4has beenneglected.A photonpassingout of a
gravitational field is shifted toward the red, Ail) being negative and Ah
positive.This result (50)was verifiedexperimentally using the Mossbauer
effect.(10)
Actually the result (50)merely expresses the conservationof energy in a

Newtoniangravitationalfield.The change in the energy of aphotonMn is
equal to the change in gravitational energy (hu/c2)A(1>, the mass equivalent
of the photonenergy hvbeing Irv/c2.This trivial result (50) can hardly be
viewed as a profound test of any gravitational theory other than
Newtonian gravitation.
It is important toask what happens to the energy lost byaphoton ‐hAv

asit climbs out of a gravitational potential energy well -hv(I)/c2. The
energy lost by the photon can only become deposited asgravitation‑
al energy associated with the matter left behind, since only gravita‑
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tional effects are involved. The consequences of this fact are far reaching.
It means that energy of aformwith about the lowest capability of creating
thermodynamic order, i.e., thermal radiation, is converted to energy of the
greatest capability of creating thermodynamic order, i.e., gravitational
energy that can beconverted directly into work.
To pursue the matter further, the case of a uniform sphere of low i

density pand radiusRmay beconsidered. The gravitational energy of the i
sphere is *6GMg/5R, where M0 = 471pR3/3 is the material mass of
the sphere. Assuming the radiating photon deposits its energy loss by
expanding the sphere, then leu = (éGM2/5R2)AR. This constitutes a
decrease in density. The redshift of photons can in general beinterpreted
ascausing areduction in the density of matter with anattendant increase
in gravitational potential energy.
9 .81.0me OFTHE SPEED OFLIGHT
[N AGRAVITATIONAL FIELD
Since photons are radiated into phase space where the number of

photons radiated per energy interval is proportional to the square of the
frequency Hz, aflux of photons, being viewed asacontinuous process of
reradiation, must beproportional to VBV, where v is the velocity of the
photons. Classical wave theory indicates the same conclusion. The
Poynting’s vector Sand the energy density E in scalar representational)
are given by

= -VU8U/8t, and E = (VU)2/2 + (away/23, (51) .

where U is the wave function and c is the phase velocity. The 3
time-averaging Poynting’s vector, or net photonflux,for atravelingwave
U = A cos[2rru(t ‐ x/c)] is

(S) = (E)v = quK, (52)3:
where K is a constant. It should be noted that the velocity of energy;
propagation a,which is the photon velocity, is not in general equal to the)
phase velocity 6.02MB)
Since energy isconserved for each individualphoton,asdiscussed in the

previous section, the steady-state flux of photons in atube of flow must be
conserved. In particular, the steady-state flux of photons at infinity in the
absence of agravitational fieldmust equal the steady-state flux of photons
in the same tube of flow when it passes into a gravitational field.
Consequently,

fin = 14026, (53)

where 110 is the frequency and cthe velocity of photons at infinity,andv is
the frequency and a the velocity in agravitational field. FromEqs. (53)
and (48) then

n = 01/4. (54)

In the weak field limit valid for actual observations
r4 = 1 ‐ 2‘13/02, (55)

where (I) is the classical Newtonianpotential. This agrees with the general
relativity prediction“) In principle this result (55) can bechecked by
observationsils)
It should benoted that this result (55) follows simply fromNewtonian

gravitational theory and the behavior of photons. It thus does not
constitute a test of any gravitational theory other than Newtonian
theory.
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10. DEFLECTIONOFA LIGHT RAY
IN A GRAVITATIONAL FIELD

The bending of a ray of light in agravitational field produced by a
spherical mass distribution such asthe sun may bederived from the
second ofEqs. (13) and (54)usingHuygen’sprinciple for the refractionof
light. To within asufficientapproximation, the total angular deflection 8
of aray of light passingwithin aprojecteddistance r0of the center of the
sun is then given by

8 = [:0[(aay/8x)/vy]dy, (56)

where y is a coordinate through the center of the sun parallel to the
original direction of the ray, and x is a coordinate through the center of
the sun transverse to the original direction of the ray. Since ax is always
negligible compared with ’Dy, 1) may betaken equal to 7)asgiven byEq.y
(54). Thus, Eq. (56) becomes

a = f: 4[a(1n \1’)/8x]dy. (57)

Using the second of Eqs. (13) for the case where M t M0, the material
mass, to first order in M0, the material mass, to first order in GMO/2621',
then 3(ln \I’)/8x : (GMO/2c2)x/r3. Thus,

a : (zoM/c2 [‐00 [x/(x2 + y2)3/2]dy. (53)

Since for asmall angular deflection 8, x = r0, Eq. (58) yields

a = 4GM0/c2ro. (59)
This agrees with the general relativity predictionuél and with the rather
uncertain observations.
It may benoted that this result (59) can beobtained from Newtonian

gravitational theory and the behavior of photons. Thus, the bending of a
light ray around the sun does not constitute a test of any gravitational
theory other than Newton’s.

11. SUPER-MASSIVE BODIES
The present theory yields nolimit for the mass of agravitating body,

such asthe smallChandrasekhar limitii’)derivedusinggeneral relativity.A
small limit to the mass of agravitating body isalso impliedbyNewtonian
theory. Increasing the material mass indefinitely eventually yields a
gravitational self‐energy (whichisnegative)equal to the rest energy of the
matter, thereby producing a body of zero total gravitational mass and
lacking any interactionwith other bodies.
To examine the implications of the present theory, the particularly

simple example of agravitating sphere of uniformmatter density pmay be
considered. The total gravitational mass of such asphere is given by the
second of Eqs. (14). For avery massive body or super-massive body

\/27erR/c = ,BR ‐>00; (60)
so the second of Eqs. (14) yields

M = 2c2R/G = (2c2/G)(3/477p)1/3M(1)/3 mM3,”. (61)
Thus the material mass M0 can increase indefinitely without any
limitation on the total gravitation mass M. This general conclusion will
not bealtered if some realistic equation of state for the pressure asa
function of the density for the matter is assumed. This result (61) thus

indicates that the present theory admits the possibility of super-massive
bodies.
A super-massive body may beenvisioned ashaving amass of the order

of agalactic mass. It may beenvisioned asbeing contained within asmall
volume, perhaps the size of the solar system. The highgravitational field
at the surface of such asuper-massive body would preclude the escape of
radiant energy due to the extreme gravitational redshift. A super‐massive
bodywould beaneffective sink for all particles directed toward the body.
Such super‐massive bodies would be black and would, therefore, not be
directly observable.(18)
Super-massive bodies are convenient to explain certain observed

astronomical phenomena. The origin of a galaxy or a quasar can be
envisioned as arising from the collision (or near collision) of two
super-massive bodies. The gravitational pull of one body on the other
would result in tidal bulges in which the gravitational fields could be
greatly reduced permitting the release of ordinary mass and radiation.
Matter would then presumably stream into the region between the
super-massive bodies where the gravitational field would be essentially
zero. The subsequent recoil jetting of the partially depleted super‐massive
bodies away fromeach othermight then account for the two spiral arms of
agalaxy.
The high velocities of stars and galaxies in certain clusters indicate the

presence of moremass than can bevisually accounted for in order to hold
the clusters together. Super-massive bodies, being black and small, could
easily account for the missing mass when appropriately situated.
The redshifts of quasars and some condensed galaxies appear to be too

great to bedue solely to acosmological redshift. There is muchevidence
indicating the existence of large redshifts apart from the cosmological red
shift.(19) Anomalously high red shifts might beaccounted for by the very
large gravitational red shifts of super-massive bodies. Thus, quasars
viewed as the result of the collision of two super-massive bodies would
radiate lightwith alarge redshift due to the gravitational fieldof the two
super‐massive bodies. Quasars, thus, neednot be far away to exhibit large
red shifts. The large red shift of some galaxies might also result from
super-massive bodies being embedded in them. The apparent rotations of
the plane of galaxies, assuggested by barred spirals,might result from the
passing of ablack super‐massive body.
Super‐massive bodiesmight also play arole in the largescale features of

the universe, such asgalactic clusters and strings of galaxies.

12. THE COSMOLOGICAI.RED SHIFT
It is generally assumed, as explicitly stated by the cosmological

principle, that atevery point in the universe, the universe in the largewill
appear isotropic. Thus, it is generally assumed that the universe can have
noorigin. Yet there is, in fact, one unique point in the universe that may
beviewed asthe origin of the universe, and that is the point at infinity.
This point can have unique properties, and it can be viewed from any
ordinary point in the universe.
Assuming that the universe in the largehas auniformmass density, it is

of some interest to obtain the gravitational field in the neighborhood of
the point at infinity for auniformmass density p. The gravitational field
\I’ is then given by the asymptotic form of Eq. (4); thus

(flip/d? = 3%, (62)
where [i2 = 2rer/c2. The bounded solution ofEq. (62) is
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\II = ‘l/Oeffir, (63) predictedhere is based solely uponagravitational effect. This means that i
the usual interpretation of the observed cosmological red shift asa
Doppler shift due to anexpanding universe is untenable. Since the theory
says the universe is not expanding, the big‐bang theory also becomes
untenable. In addition, the theory implies a steady‐state universe that is
not changing with time.
According to the present theory, the physicalmechanism giving rise to

where ‘1’0 is aconstant of integration.
The cosmological red shift may be obtained by considering a photon

passing through this fieldgiven by Eq. (63).Using the second of Eqs.(47)
or (48) and Eq. (63), the fractional change in wavelength of the photon2
IS

z = (Aobserver " Asourcel/L‘source the cosmological red shift is gravitation; so the energy lost by photons
= exppmrmrce ‐ robsmerfl ‐ 1} (64) proceeding toward the earth from large distances must be deposited as

' . , gravitational potential energy. Considering the fact that localgravitational
where rsource and robserver are assumed to be m the asymptotic region. red shifts can be accounted for by assuming a local expansion of matter
Abbreviating the notation, Eq. (64) may bewritten as (Sec. 8above), asimilar mechanismmay beassumed for the cosmological

z = AMA : 825‘ - 1, (65) red shift. Matter distributed heterogeneously as condensed galaxies and
stars has lower gravitational energy thanmatter evenly or homogeneously
distributed asgas and dust. Thus, light passing through space tends to
drive the matter in the universe toward more uniform or homogeneous
distribution, thereby increasing the gravitational potential energy of the
universe.

2 2 Arr/A = 2,3,. (66) The cosmological red shift process is the opposite of the process
forming localcondensations such asstars and galaxies. Stellar formation is
associated with decreasing local gravitational potential energy and the

H : 23 ‐_. 100 km/sec/Mpsec. (67) radiationof photons.The cosmological redshift phenomenon isassociated
with the absorption of photons and with an “evaporation” of local
condensations of matter with a consequent increase in gravitational
potential energy. Thus, in asteady-state universe these two processes may
be assumed to bebalanced against each other.

For anestimateddensity of the universelzo) of p = 10*29 gm/cm3 then
,8 = 7 X 10’29crn-1. For distances r up to the order of 10 X 109
light-years, Br << 1, the red shift, as given by Eq. (65), may be
approximated asalinear red shift

Using the estimated value of B, the Hubble constant becomes

Considering the large range of observational estimates of the Hubble
constantm) and the uncertainty in estimating the density of the universe,
this value (67) may beregarded assatisfactory.
13. COSMOLOGY
The present result (66) and (67) for the cosmological red shift has

(1 profound implications for cosmology. The cosmological red shift Received on 15January 1988.
mN
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Résumé
L’e’quationdePoissonpour lepotentielgravitatianneldeNewtonest traite’e afin d’y inclure
l’équivalent massique du champ d’érzergie lui-méme considéré comma faisant partie dela
masseproprement dite. Le temps‐retard est introduit entransformant l’équation dePoisson
enuneequation d’onde initialementdépendante du temps. Ennegligeant le temps‐retard, on
peutprédireapenprés40pour cent dela part inexpliquéedelaprecessionet dupe’n’he’liede
Mercure.Ledéplacementgravitationneldela raie rouge, leralentissementdelaoitesse dela
lumiére et la courbure du rayon lumineux darts anchamp gravitationnel procédent dela
gravitation newtonienne et du compartment des photons. Les effets gravitationnels sont
généralement plus petits que ceux donnés par la gravitation newtonienne. II 713) a pas de
limite, teIIe que ceIle deChandrasekhar,pour la dimension des objets engravitation; comme
il devient dés Iorspossible deprendre des corps super-massifs enconsidération, ils peuvent
expliquer la masse “manquante” présente dans l’uni'vers et l’origine des quasars et des
galaxies. Ledéplacement cosmologique dela raie rougeest ancomma anefletgravitationnel,
la constante deHubblepre'dite correspond raisonnablement bien avec les estimations tirées
ales observations. Des Iars,selon cette théorie, le de’plaeement dela raie rouge n’est pas dz} d
an eflet Doppler; l’unioers n’est pas en expansion; le “big-bang” n’a jamais ea lieu et
l’univers setrouve dans un regime d’équilibre continu.
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