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The derivation of tHe Lienert—Wiechert retarded potential involves a mathematical error, so it is not
a valid soliition to the inhomogeneous wave equation, and it does not represent retarded action
correctly. The correct retarded potential satisfying the inhomogeneous wave equation is presented,
which agrees with the independent result derived from first principles bdsed directly upon retarded

action.
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1. INTRODUCTION .

The Lienard!-Wiechert!® retarded potentials were
proposed for electrodynamics phenomena propagated in
absolute space or in a luminiferous ether, as predicted by
Maxwell theory. ‘

The concept of retarded time is very important. If action is
propagated with a finite velocity ¢, instead of instanta-
neously, then introducing time retardation into static or
steady-state potential fields yields propagation of these
fields. In particular, retarded potentials must obey the wave
equation with the phase velocity c.

Unfortunately Lienard and Wiechert induded amathemat-
ical mistake in their analysis of time retardation, which
makes their expressions for the retarded potentials wrong.

- These incorrect Lienard-Wiechert expressions for the retarded

potentials continue to be reproduced in electrodynamics
textbooks.!® The correct mathematlcal expression for a
retarded potential {s presented below.

(The Lienard-Wiechert retarded potentials have been
recently criticized”) in terms of “special relativity.” Since
the Lienard-Wiechert potentials were proposed before
special relativity, since special relativity is not valid,’® and
since this criticism does not include the mathematical error
considered here, this criticism is not relevant to the present

paper.) -

2. THEPHYSICSIMPLIED BY THE INHOMOGENEOUS
WAVE EQUATION
To agree with the concept of time retardation the Lienard—
Wiechert retarded potentials must be solutions to the wave
equation.!” To illustrate the principles involved it is suffi-
cient to consider the scalar solution @ to the inhomogeneous
Scalar wave equation
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for a source function p = p(r, t), where the wave velocity ¢ is
a constant in the r space for V2. The propagation properties
of the wave are independent of the source function p. In
particular, in regions where p = 0, in empty space, an
elementary plane-wave solution to (1) is given by

= sin|:————2”(J;_ Ct)], (2)

where A is the wavelength, a parameter independent of ¢.

Since the wave velocity in (1) cannot be takerr as depend-
ent upon the velocity of a source charge v’, the Ritz br
ballistic theory for light, where the wave velocity is assumed
to be ¢ + v/, cannot be represented by the inhomogeneous
wave equation (1).

Since the wave velocity ¢ is constant in the r space, it
cannot be taken as a functjon of the velocity v of an arbi-
trarily moving observer in the r space. In the observer’s rest-
frame, (1) then requires mathematically that the observer
see a one-way wave velocity c¢* given by

c*=c~vV,:

©3)

‘where the signs are chosen for the source approaching the

observer and the observer receding from the source. This
conclusion (3) is in agreement wifH the expenmental
observations of the one-way velocity of light.#'4

It may be concluded that the inhomogeneous wave
equation (1) can only represent a physical wave in a pre-
ferred frame of reference, the r frame, in which the wave
velocity c is a constant, such as a sound wave in a still gas or
liquid, an elastic wave in a stationary solid, or a light wave in
a fixed luminiferous ether or absolute space.
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3. THE PROPAGATION OF ACTION

The effect of one body at r’ on another body at r separated
by the distance’R = r - r' may be assumed to propagate
with a velocity of action u.

According to Mach,!!*)action at a distance is supposed to
be instantaneous, so the velocity of action is infinite:

u(Mach) = o0, (4)

This theory cannot account for the fact that light and
electromagnetic signals are propagated with a finite, and not
an infinite, velocity. Nor does Mach’s pure relativity theory
explain all the phenomena that depend upon absolute
space.(!®)

According to the Ritz!'” or ballistic theory the velocity of
action is supposed to be propagated with the velocity c, the
velocity of light, with respect to a source body moving with
the velocity v’; thus,

u(Ritz)=c+v'. (5)
This theory does not agree with the relevant observations.(*®

A theory involving a velocity of action that depends upon
the velocity of the observer v (such as special relativity,
where the one-way absolute velocity of action would have to
equal ¢ + v in order for c* to always eqtial ¢, as postulated)
violates causality, as the source would have to have prior
knowledge of the velocity of the observer before a signal or
the action could proceed from the source. A prior cause
cannot depend upon an effect that has not as yef even
occurred.

According to classical theory actlon and light propagate
with the velocity ¢ independent of the motion of the source;
thus,

u(classical) =c, (6)

where c is the one-way velocity of light with respect to the
fixed luminiferous ether or absolute space, as defiried by the
preferred r space in (1). This velocity of action, (6), is

.confirmed by all of the observations of the one-way velocity

of energy propagation of light.(®4)

A signal proceeding from a source with the instantaneous
position r'(¢) with the velocity of action c, 1ndependent of
the velocity of the source, requires the time Al to reach gn
observer at the position r(t + At), where

[xt+An-x'(t)| R,
¢ ¢’

At = (7)

where R, is the retarded distance. If R = r(f) - r'(f) is the
initial instantaneous separation distance between source and
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observer and if the observer moves with the constant velocity
v, then at the time ¢ + Af the retarded separation distance R,
becomes

VR,

R, =R +vAt= (8)

It may be noted that the initial instantaneous relative
distance R is a function of the time and the relative velocity
between the source and the observer. During the time Af
after the'action or signal has left the source and before it has
arrived at the observer the dction itself is independent of
both the source and the observer, as may be envisioned by a
flight of photons moving with the velocity ¢ relative to
absolute space.
Solving (8) for R, yields

) =[(v-R/;)+J(v~R/c)2+(1-V2/c2)R]. ©)

’ 1-v2/c?

For the case of an observer moving directly away from the
source with the velocity v < ¢, (9) gives

R =—2—, (10)

1-v/¢c

and the retardation Af becomes
A= (11)

c—v

(One may, of course, choose the initial time as ¢ - At and the
final time as ¢ without thése results (8) through (11) being
altered.)

For the retarded Coulomb potentiél the apparent distance
to the charge as’'seeri by the moving observer is given by the
retarded 'distance R. (9). Thus, from first principles the
retarded Coulomb potentlal is simply

. o=
: "R,

For the observer moying directly away from the charge,
where R, is giver by (10), the retarded Coulomb potential
becomes

o=20=v/9)

7 (13)

(12y
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4. THE CORRECT RETARDED SOLUTION TO THE
INHOMOGENEOUS WAVE EQUATION
The solution to the inhomogeneous wave equation (1) can

'be represented as an integral over the source function p(r, f)

by introducing the Green’s function that satisfies'”

(v’ - ;7;2) G(r, X', 1) = —4nS(r - T')8(t - 1"), (14)

where +' and t' are independent variables for any arbitrary
space-time position and r and ¢ represent the space-time
position of a point source. Solving (14) for G vanishing at 7',
1’ at infinity yields

S(t—t'—|r—r'|/c)

G(r,t;x', t")y=
r—x'|

(15)

Then in the usual way the solution to (1) can be represented
by the integral expression

S(t-t'-|r-r'/e)

, (D(r,t)=jd3r’jdt'p(r’,t’) v , (16)

where the integration over r' and ¢’ is taken over all space
and time, where r' is independent of ¢'. Performing the time
integration yields the correct retarded potential

— 3.1 p(r"T)
@ e = [ @rr Z0 (17)
where tis the retarded tirme defined by
R L 4 (18)

[4

The space integration over r’ in (17) is to be carried out
regarding ras a constant’because r’, being independent of t',
must also be taken as independent of =.

5. THE CORRECTRETARDED COULOMB POTENTIAL
FOR A MOVING CHARGE

Substituting the source function for amoving point charge
q, as given by

p(r',t) = qd[r' —x(f)], (19)

where t = 1, into (17) the integration over r' may be per-

formed immediately, treating r as a constant, to give the
correct retarded Coulomb potential for a moving point
charge as

q
- D, = ,
r ] (20)

where R, is given by (9). This solution to the wave equation
(1) may also be seen to be correct because it agrees with
the ®, derived independently from first principles, given by
(12).

6. THEINCORRECTLIENARD-WIECHERT RETARDED
SOLUTION

Despite the clear mathematical requirement that r* and ¢’

be independent variables, which must be thus independent

- of each other, which are to be integrated over all space and

time, and which are introduced merely to generate an
integral expression for the solution to the inhomogeneous
wave equation (1), Lienard and Wiechert argue incorrectly
that the independent space variable r’ is a dependent function
of the time variable ¢'. Thus, the delta function in (16) is
incorrectly interpreted to mean'®

a(t-:'-‘_’:'_") =5(:-i'_“—‘5c'-‘i”) = s-r®), (1)

(4

as though r’ were to represent the dependent position of a
source charge at r' at the instant ¢/, instead of being merely
any independent position r’ anywhere at all in space. More-
over, it is thus implicitly assumed here that the action
proceeds with the velocity ¢ with respect to a moving point
source charge, or with the velocity ¢ + v’, which is the Ritz
or ballistic theory, which is empirically wrong. For the
integration over t' the falsely interpreted delta function,
given by (21), can be replaced by

r-r'(t o' -t
5 t’—t-—l 1) - =1
¢ ag’ —t—|r—rx'(t"y|/c)/ dt’
(22)
st -t

"1-R-V'/(cR)

where R = r - r'(t') and v' = dr'/dt'. Since r' must be
independent of t', no v’ = dr’'/dt' can be logically defined!
Substituting the unjustified replacement (22) into (16) and
performing the integration over ¢’ yields the incorrect
Lienard-Wiechert retarded potential ®@,;,, as
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pr',r)

, 2
R-R-V' /¢ (23)

Oy = Ids"'

where R and v’ are to be evaluated at the retarded time (18).

For a moving point charge the incorrect Lienard-Wiechert
potential is given by substituting the source function (19) for
t-= tinto (23) and integrating, yielding

9

“R-R-v' /¢ (24)

% rLlw

where R and v’ are to be evaluated for the retarded time
(18). For the case where an observer moves with the velocity
v directly away from the source charge collinearly moving

with the velocity v, (24), using (10), gives

_q=v/¢)

riw — R(l—V'/C). (25)

This Lienard-Wiechert result (24) or (25) does not agree
with the correct retarded Coulomb potential (12) or (13)
derived from the inhomogeneous wave equation (1) and
from first principles. Thus, the Lienard—Wiechert potential is
not only not a proper solution to the inhomogeneous wave
equation (1), it also violates first principles. It may be noted
from (24) or (25) that the Lienard-Wiechert, retarded
potential implies a velocity of action that is not ¢ but depends
upon the velocity of the source, contrary to observations.

Received 19 January 2000.

Résumé

La dérivation‘du potentiel retardé de Lienert—Wiechert comprend une erreur mathématique. Par
conséquent elle n'est pas une solution valide pour I'équation d’onde inhomogeéne et elle ne représente
pas l'action retardée correctement. La bonne valeur du potentiel retardé pouvant satisfairel "équation’

"d’onde inhomogene présentée est d’accord avec le résultat indépendant dérivé des premiers principes
basés directement sur l'action retardée. '
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