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A Mathematical E r r o r in the Lienard‐Wiechert
RetardedPotentials
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‘ Abstract
7

)

ThederivationoftfieLienert‐Wiechertretardedpotentialinvolvesamathematicalerror,soit isnot
a validsolution to the inhomogeneouswave equation, and it does not represent retardedaction
correctly. Thecorrect retardedpotentialsatisfying the inhomogeneouswaveequation ispresented,
whichagreeswith the independentresultderivedfromfirstprinciplesbdseddirectly uponretarded
action.
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1. INTRODUCTION ‘
The Lienardm‐Wiechertm retarded potentials were

proposed for electrodynamics phenomena propagated in
absolute space or in a luminiferous ether, aspredicted by
Maxwell theory.
The concept of retarded time is very important. If action is

propagated with a finite velocity c, instead of instanta‑
neously, then introducing time retardation into static or
steady-state potential fields yields propagation of these
fields. In particular, retardedpotentials must obey thewave
equationwith the phase velocity c.
UnfortunatelyLienardandWiechert includedamathemat‑

ical mistake in their analysis of time retardation, which
makes their expressions for the retardedpotentials wrong.
' These incorrect Lienard‐Wiechert expressions for the retarded
potentials continue to be reproduced in electrodynamics
textbooks!” The correct mathematical expression for a
retardedpotential is presentedbelow.
(The Lienard‐iWiechert retarded potentials have been

recently cri1ticized‘4'5) in terms of ”special relativity.” Since
the Lienard‐Wiechert potentials yvere proposed before
special relativity, since special relativity is no t valid“) and
since this criticismdoes not)include the mathematicalerror
considered here, this criticism is no t relevant to the present
paper.) /

2. THEPHYSICSIMPLIEDBYTHEINHOMOGENEOUS
WAVE EQUATION
To agreewith the concept of time retardationthe Lienard‑

Wiechert retardedpotentials mus t besolutions to the wave
equation”) To illustrate the principles involved it is suffi‑
cient to consider thescalar solutionCDto the inhomogeneous
’scalar wave equation

(1)

for a source function ,0= p( r, t),Where thewave velocity c is
a constantin the r space'for V2. The propagationproperties
of the wave are independent of the source function p. In
particular, in regions where p = O, in empty space, an
elementary plane-'Wave solution to ’(1) is givenby

<p=sm[‐‐2”(’;‘“’], (2)

where ,1is the wavelength, a arameter independent of c.
Since the wave velocity in (‘5’) cannot be taken' asdepend‑

ent upon the velocity of a source charge v ’ , the Ritz Or
ballistic theory for light,where thewave velocity is assumed
to be,c + v", cannot be represented by the inhomogeneous
Wa v e equation (1).
Since the wave velocity c is constant in the 1‘space, it

cannot betaken asafunction of the velocity v of anarbi‑
trarilymovingobserver in the r space. In the observer’s rest‑
frame, (1) then requires mathematically that the observer
see aone-way wave velocity c* givenby

c * = c ‐ ' v , ~ ’ (3)

Where the signs are chosen for the sourde approaching the
observer and the observer receding from 'the source. This
conclusion (3) is in agreement with the experimental
observations of the one-way velocity of light.‘8'”’
It may be concluded that the inhomogeneous wave

equation (1) can only represent a physical wave in a pre‑
ferred frame of reference, the r frame, in which the wave
velocity c is a constant, suchasa soundwave in a stillgas or
liquid,anelasticwave in astationarysolid,or alightwave'in
a‘fixed luminiferous ether or absolute space.
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3 . THE PROPAGAT IONOF ACT ION
The effect of one bodyat r’ on anotherbody at r separated

by the distance'R = r ‐ 1"may be assumed to propagate
with avelocity of action u.
According to Mach,”5)actionat a distance is supposed to

be instantaneous, so the velocity of action is infinite:

u(Mach)= 00. (4)

This theory cannot account for the fact that light and
electromagnetic signals arepropagatedwithafinite,andno t
aninfinite, velocity. Nor does Mach’s pure relativity theory
explain all the phenomena that depend upon absolute
space.‘16)
According to the Ritz‘17) or ballistic theory the velocity of

action is supposed to bepropagatedWith the velocity c, the
velocity of light, with respect to a source bodymovingwith
the velocity v’: thus,

u (R i tz )=c+v ' . (5)

This theory does not agreewith the relevantobservations.‘‘8’
A theory involving avelocity of action that depends upon

the velocity of the observer v (such as special relativity,
where the one-way absolutevelocity of actionwouldhave to
equal c + v in order for c* to always equal c, aspostulated)
violates causality, as the source would have to have prior
knowledge of the velocity of the observer before a signal or
the action could proceed from the source. A prior cause
cannot depend upon an effect that has not as yet even
occurred.
According to classical theory action and light propagate

with the velocity c independent of the motionof the source;
thus,

u(classical)= c, (6)

where c is the one-way velocity of light with respect to the
fixed luminiferousether or absolute space, asdefinedby the
preferred r space in (1). This velocity of action, (6), is
.confirmedby allof the observations of the one-way velocity
of energy propagation of light.(8‘14)
A signalproceeding from a sourcewith the instantaneous

position I '(t) with the velocity of action c, independent of
the velocity of the source, requires the time A! to reach911'
observer at the position r ( t + At), where

N = |r(t+At)‐r ’(t)| :13, (7)
C C .

where R, is the retarded distance. If R = r ( t ) ‐ r ' ( t ) is the
initialinstantaneousseparationdistancebetweensourceand
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observer andif theobservermoveswiththe constant velocity
v, thenat the time t + At the retarded separationdistanceR,
becomes

vR,R,=R+vAt= (8)

It may be noted that the initial instantaneous relative
distance R is a function of the time and the relativevelocity
between‘the source and the observer. During the time At
after the'actionorsignalhas left the source andbefore it has
arrived at the observer the action itself is independent of
both the source and the observer, asmaybeenvisionedby a
flight of photons moving with the velocity c relative to
absolute space.
Solving (8) for R,yields

R=[(v.R/;)+"(v-R/c)2+(1-v2/c2)R]. (9)

’ l‐VZ/cz

For the case of an observer moving directly away from the
source with the Velocity v < c, (9) gives

RR = , 10r l ‐V / c ( l

and the retardationAt becomes

At = i . (11)
c ‐ v

(Onemay,of course, choose the initial time as t ‐ At and the
final time ast without thése results (8) through (11) being
altered.)
For the retardedCoulombpotentialthe apparent distance

tothe charge asseenby themovingobserveris givenbythe
retarded distance R, (9). Thus, from first principles the
retardedCoulomb potential15simply

_- -<1>=‐"‐.
- R

For the observer moving directly away from the charge,
where R,is giveri by (10), the retarded Coulomb potential
becomes

¢=4_(1:V_/fl,R (13)

(12)‘
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4. THE CORRECTRETARDED SOLUTION TO THE
INHOMOGENEOUSW AV E EQUATION

The solution to the inhomogeneous wave equation (1)can
‘berepresented asan integralover the source functionp( r, t)
by introducing the Green’sfunction that satisfies”)

[Vz " 513:2) G a m e ) = ‐47r6(r- r 'W4 ' ) , (14)

where m’ and t’ are independent variables for any arbitrary
space-time position and r and t represent the space-time
positionof apoint‘ source. Solving (14) for Gvanishing at r ’ ,
t’ at infinity yields

6(t~t’‐ | r‐r ’ | /c)G(r,t;r',t’) = Ir-r'l ‘ (15)

Then in the usualway the solution to ( l ) canberepresented
by the integral expression

6( t ‐ t ’ ‐ | r ‐ r ' | /c )J @(r,t)=Jd3r’Jdt'p(r’,t’) |r~r’| . (16)

where the integration over r ’ and t’ is taken over all space
and time, where r’ is independent of t’. Performing the time
integrationyields the correct retardedpotential

( m m )=J’fwffrf’}, (17)

where r i s the retarded tim’e defined by

r=t-‘Lcr'l. (18)

The space integration over r’ in (17) is to be carried out
regarding ras aconstantbbecause r ’ ,beingindependentof t ’ ,
must also be taken asindependent of 1'.

5 . THECORRECTRETARDEDCOULOMBPOTENTIAL
F O RA M O V I N G CHARGE

Substitutingthe source function for amovingpoint charge
4, as given by

PU'J) = q § [ r ’ ‐ r ( t ) ] , (19)

where t = 1,into (17) the integration over 1" may be per‑
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formed immediately, treating 2'as a constant, to give the
correct retarded Coulomb potential for a moving point
charge as

, (20)

where Rris given by (9). This solution to the wave equation
(1) may also be seen to be correct because it agrees with
the (I),derived independently from first principles, given by
(12).

6. 'I'I-EINCORRECI‘LIENARD‐WIECHERTRETARDED
SOLUTION

Despite the clear mathematical requirement that r’ and t’
be independent variables, whichmust be thus independent

- of each otherfi’which are to beintegrated over all space and
time, and which are introduced merely to generate an
integral expression for the solution to the inhomogeneous
wave equation (1), Lienard and Wiechert argue incorrectly
that the independent space variable I" is a dependent function
of the time variable 1". Thus, the delta function in (16) is
incorrectly interpreted to mean”)

{tank‐1') =a(r‐i'‐'‐r‐"r7'fl) =5[t-‐t’(R)],l (21)
C

as though r’ were to represent the dependent position of a
source charge at r ’ at the instant t’, instead of being merely
any independent position I" anywhere at all in space. More‑
over, it is thus implicitly assumed here that the action
proceeds with the velocity c with respect to amoving point
source charge, or with the velocity c + v ’ , which is the Ritz
or ballistic theory, which is empirically wrong. For the
integration over t’ the falsely interpreted delta function,
given by (21), can be replaced by

§(,._,_ Ir‐r'(t')l)= 6( t ' ‐ t )
c  d ( t ’ ‐ t ‐ | r ‐ r ’ ( t ’ ) | / c ) / d t '

_  6 ( t ‐ t ' )
_1‐‐R-v’/(CR)'

(22)

where R = r ‐ r ’ ( t ’ ) and v’ = dr’/dt’. Since 1"must be
independent of t’, no v’ = dr’/dt’ can be logically defined!
Substituting the unjustified replacement (22) into (16) and
performing the integration over t’ yields the incorrect
Lienard‐Wiechert retarded potential (1)eras
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p(r ’ ,r) , 23R ‐R-v ’ / c ( )<1)er = Id3r’

where R andv’ are to beevaluated at the retarded time (18).
For amovingpoint charge the incorrect Lienard‐Wiechert

potentialis givenby substituting the source function (19)for
t~= r i n t o (23) and integrating, yielding

ll
=R‐R-v’/c' (24)(D rLW

where R and v’ are to be evaluated for the retarded time
(18).For the case where an observer moves with thevelocity
v directly away from the sourcecharge collinearly moving

with the velocity v’, (24), using (10), gives

This Lienard‐Wiechert result (24) or (25) does no t agree
with the correct retarded Coulomb potential (12) or (13)
derived from the inhomogeneous wave equation (1) and
fromfirst principles.Thus, the Lienard‐Wiechertpotentialis
n o t only no t a proper solution to the inhomogeneous wave
equation (1), it also violates first principles. It maybenoted
from (24) or (25) that the Lienard‐Wiechert. retarded
potentialimplies avelocity of actionthat isnotcbut depends
upon the velocity of the source, contrary to observations.

Received 19January 2000.

_ 4(1'-V/€)
rLW _ Ra-VI/C). (25)

Résumé
La derivation‘dupotentiel retardédeLienert‐Wiechert comprend une erreur mathe’matique. 'Par
consequentellen’estpasunesolutionvalidepourl’e’quationd’ondeinhomogéneetellenerepre’sente
pasl’actio'nretarde’ecorrectement.Labonnevaleurdupotentielretarde’pouvantsatisfairel’équation'
'd’ondeinhbmoge‘nepre’sente’eestd'accordavec lere’sultat inde’pendantde’n've’despremiersprincipes
bases directement sur I’action retarde’e.
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