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Summary. - A relativistic theory of causal quantum mechanics for a 
scalar particle is proposed in which the phase velocity is equal to the 
particle velocity. .A particle is viewed as a classical point particle that 
moves along a wave normal attached to a surface of constant phase. 
A prescription is derived for t he particle trajectories in a standing wave 
which gives rise to periodic motion in the bound-particle case. The old 
quantum theory of Bohr and Sommerfeld is obtained in the geometrical-
optics approximation. The observed particle density is the wave intensity 
(in agreement with 'PlJf* of the traditional theory). The problems of a 
free particle, a particle reflected from a mirror, and the simple harmonic 
oscillator are considered. 

1. - Introduction. 

From diffraction experiments the wavelength, A, to be associated with 
a moving particle is the de Broglie wavelength A = 2rtli/ IP I where p is the 
momentum of the particle. Since t he velocity of energy propagation and 
momentum transfer is the velocity of the particle v, a plane wave for a free 
particle may be postulated in t he form 

(1) 'J'( r , t) =sin [p · (r- vt )jn], 

where p and v are constants of the motion and r and t are the position and 
t ime. As an empirical equation that describes the essent ial laboratory results 
eq. (1) is certainly correct . 

SIDDIQI ( 1 ) has presented an interesting causal theory in which he has also 

(1) M . . -\.. SIDDIQI: Pakistan. Journ. Sci. I ndustr. Res., 6, 28 {1963). 
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c hosen t he phase a nd particle ve locities equal. H e unfortunatly inte t·prets P 
as a physical p ilot wave. H e does not consider the bound-particle case . 

P ure real representat ions have been chosen here (there being no a pr iori 
r eason for excluding su ch representations), in order to avoid t he irrep laceable 
i = v -1 t hat occurs in the traditional theory (2 · 3 ). 

The sca lar lJf field defined by eq. (1) is not Loren tz-i nvariant for arbitrary 
choices of the posit ion, r , and the t ime, t. Nevertheless, for values of r and t 
r estricted to l ie a long t he trajectory , r = r (t) , the phase in eq. (1), being 
a lways identically constan t, does remai n Lorentz- invarian t . The lJf function, 
regarded as a generat ing function, need only generate proper rela t ivistic par-
t icle trajectories; the en t ire lJf fi eld need not have phy.-ical meaning; and 
Lorent z covaria nce for the entire field is unnecessary (') . 

It may be seen t hat while t he space part of the pha ·e of the postula ted 
plane wave for a free part icle, eq. (1), is t he sa me as t he t radit ional t heory, 
the t ime par t di ffers . The qua nt ity p ·vfli has replaced t he t radit ional Planck-
Einstein frequency, efli, where e is the t otal relativ istic energy. It is important 
t o note t hat fo r photons, where p = ecfc2 , t he theory prop osed here preserves 
t he Planck-Einstein frequen cy condition in agreemen t wit h observation (') . 
Because t he Tab oratory evidence for · quantum-mechanical behav ior does not 
inv olve explicit measurements of time, t he validity of t he t ime var iation pro-
p osed here can only be tested theore tically (cf. (4 )). 

The t raditiona l de Broglie 'Yave (5 ) for a free part icle, 

(2) tp =sin [ (p · r -Et) Jh] , 

suffers from a number of inhere nt difficult ies . The relat iv istic t ranslation of 
a system oscillat ing wi th t he fre quency mc 2Jh, wh ere m is t he mass of the 
system, yelds a standing wave and not t he propagating de Broglie wave, eq. (2), 
as i · sometimes claimed (6 ) . The phase velocity c2 fv is fict itious since it cannot 
be observed. If a group wave is in troduced further difficu lt ies arise. A group 
wave cannot exist in empty space (7). The group wavelengt h appears to imply 
a pa:·ticle that is not only t oo large but is a lso variable in size. 

F or t he t radit ional nonrelat iv istic theory of a free particle t he total rela-
t iv istic energy e in eq . (2 ) is rep laced by the total classi(·a l energy E, the rest-
mass energy being dropped. u nfortunately, t he nonrelat iv istic phase velocity 

( 2 ) A . L A);'DE: From D ttalisnb lo Unity in Qtta nttun Physics (Camb ridge, 1960). 
(3) J . P . W ES L EY: P hys. R er ., 122, 1932 (1961). 
( 4 ) Y. AH AROXOV a nd D . B OII)f : Phys. Rer., 122, 1649 (196 1). 
(5) L. D E BRor:LIE: A n n. de P hys., 3, 22 ( 1925). 
( 6 ) P . G. I nlrodttrlio n to the rl'heory oj Relativity (Xew York, 1942), 

p. 143. 
(1) J . A. STRATTO);': Electronv tgnetic T heory (Xe11· Yo rk, l 9·H ), p. 330. 
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vf2 cannot be obtained from the relativistic velocity c2 fv as v--+ 0 ; and 
the phase is no longer either Lorentz or Galilean invarian t. The trans ition 
from relativistic velocities to nonrelativistic velocities occurs smoothly in the 
theory proposed here. The angular frequency p · v fh fo r a free particle, eq. (1), 
becomes 2Efh in the non relativ istic case -a factor of 2 greater than the t ra-
ditional value. 

2. - Waves and classical particle trajectories. 

Formally unquantized classical particle motion may be generated from 
wave funct ions which have no direct physical rea lity . T his Section shows 
bow such wave functions may be found for both traveling waves a nd standing 
waves and how the classical trajectories may be obtained from sueh functions. 

2·1 . Wave eqttation. - A relativisticall_y invar iant scalar wave equation 
atisfied by eq. (1) for a free particle is 

(3) (c 2p · V' + e2/2t) P = 0. 

For motion in either the positive or negative direction a long the wave normal 
the postulat ed equation is 

(4) 

This eq. (4), while no longer ' relativ ist ically covar ia nt , nevertheless, admits 
the two covariant possibilities. For p a nd e c-onstant and p parallel to the \ 
operator (as will be assumed to always be t he case (see Sect. 2' 2)) eq. (-!) becomes 

(5) 

Fo1· the case of a part icle moving under the action of a potential, r , or 
under the action of boundaries the scalar wave eq. (5) is generalized by replac-
ing e by (e- Y); thus, 

(6) 

where p is no longer constant. This generalization is justified by considering 
a small region in space over which l ' remains constant. For such 
a local region the solution to eq. (6) becomes just a plane wave and t he traj ec-
tories straigh t lines as in eq. (5). 

In terms of t he particle ve locity, eq. (6) becomes 

(7) 
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2'2. Particle trajectories. - The velocity of a point of constant phase and, 
therefore, the velocity of the particle traveling along a traveling-wave normal 
fixed to a surface of constant phase is given by 

(8) 

This specification of the trajectories, eq. (8), is unambiguous as long as traveling 
waves P , are being considered where 

(9) P 1 = P[k·(r-vt)], 

where k is the propagation constant and v(k·v) = v2k. However, when there 
are standing waves and the wave function is expressed as a product of a space 
function and a t ime function, 

(10) P , = 1p(r) T(t) , 

it is not immediately apparent as to which direction a long the wave normal 
the particle is traveling. 

To resolve the difficulty two long wave trains traveling in opposite directions 
with t he same wavelengths and speed may be considered. Subs_tituting the 
resulting wave, P , = P 1(t) + P ,(-t), into eq. (8), including an appropriate 
ambiguity of sign, 

where the primes denote differentiation with respect to the argument as shown 
in eq. (9) . In order for v to be positive and associated with the positive traveling 
wave it is necessary to choose the minus sign in eq. (11), since for v(k ·v) = v2k 
eq. (11) then yields P ,,[k ·( r -vt)]=O, or k ·(r -vt)=constant on a surface 
of constant phase. Changing the signs of k and v also yields consistency for 
a negative phase velocity when the minus sign is chosen in eq. (11). A con-
sistent definition of the phase velocity in a standing wave, thus, becomes 

(12) v = v 2\1Pj(oPjot), 

which is identical to eq. (8) except for a change of sign. 

2"3 . Hamilton-Jacobi equation. - HAMILTON showed that light may be 
interpreted as a flux of particles traveling along the ray path acted on by a 
potential determined by the index of refraction. Here it is proposed to investi-
gate the inverse problem of showing how a flux of classical nonrelativistic 
particles might exhibit wave properties. 
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In conformity with the velocity of energy and momentum transfer, the 
wave to be associated with the particles will be assumed to have a wave velocity 
equal to the particle velocity . In conformity with the ray path 
i assumed to correspond to the particle trajeCtories. In particular, a wave 
is to be found with a phase velocity equal to the particle velocity which yields 
the Hamilton-Jacobi equation in the geometrical-optics limit. Considering 
the case where energy is conserved, the desired wave is 

(13) P(r, t) =sin K[S1 (r) -A(t)], 

where K is a large arbitrary constant, S1{r ) is the Hamilton characteristic 
function which is expressed in terms of the position only and the constants 
of the motion, and A(t) is the action expressed in terms of the time only and 
the constants of the motion. 

Substituting eq. (13) into eq. (7) and preserving terms in K 2 only, the geo-
metrical-optics approximation yields 

(U) 

This result reduces to the H amilton-JaGobi equation (8 ), since 'by 
definition 

t 

(15) A(t) = J p·vdt, 
to 

and (CJA /CJt}" = (p·v) 2 = 2mv 2(E- V). 
From the fact that (8 ) p = \1 S1 and p ·v= CJAjot, it may be seen that 

eq. (8) specifies the correct particle velocity . 
To briefly illustrate the principles involved, a free particle has S1 (r) = p · r 

and A(t) = p ·vt where p and v are constants of the motion. The traveling 
wave specified by eq. (13) then becomes 

(16) P(r, t) = sinK[p·(r-vt)], 

(cf. eq. (1)). 
This analysis shows that a flux of particles can follow classical trajectories 

while at the same time exhibiting possible wave behaviour, providing only 
that the wavelength, 2n /K Jp J, is small compared with the smallest observed 
path length. 

( 8 ) A. G. The DywLmics of Particles and of Rigid, Elastic and Fluid 
Bodies (New York, 1949), p. 136. 
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The st anding wave 

(17) 'l' (r , t) =sin [KS1(r )] sin [ KA(t)], 

also yields the H amilton-Jacobi eq. (14) in the geometrical-optics approxi-
mation. For this standing wave, eq. (17), the velocity of the particle is prescribed. 
by eq . (12); thus, 

(18) 
• VS1(r ) ctg [KS1(r )] v = v- - -- --- . 
cA (t) jot ctg [KA\t )] 

J'fultiplying eq. (18) by dr jdt and integrating yields 

(19) sin [ KA(t)] jsin [KA(t0 )] =s in [KS1(r ) ]/si n [KS1(r 0 )J , 

where the constants of integration have been cho ·en so that § 1 (1'0 ) = A(t0 ) in 
conformity with class ic:.! theory. Neglecting the possible addit ive constant 
2nn jK, where n is an integer, which is presumably very small in any case, 
eq. (19) yields t he class ical prescription o.f the motion h\(r) = A(t). An equally 
valid classical solut ion is obtained by replacing the initial conditions with a 
minus sign, S 1(T0 ) = -A(t0 ), which then spr.cifies motion in t he opposite direc-
tion along the t rajectory. The generation of the t wo poss ible solut ions was 
to be expected for t he standing-wave case. 

3. - Waves and quantum-mechanical trajectories. 

The purely formal mathem atical waves of Sect. 2 which were used to gen-
erate classical motion are now generalized to include quantum-mechanical 
motion. 

3·1. Postulates for quantum-mechanical motion. - It is postulated, in the 
manner of ScRODL'iGEL{, (9 ), t hat any solution of the wave eguations (6) or (i ) 
subj ect to the usua l boundary conditions that define a wave may yield a 
ically meaningful generating function '!'. T he quantum conditions, which 
arise as a consequence of the imposit ion of boundary conditions, are con-
ditions that restrict t he choice of some of the cla ·sical constant of the 
motion. The quantum conditions are evidence of the classical constants of 
the motion. The quantum condit ions are evidence of the physical effect of 
fields or boundaries upon t he particle's motion. 

( 9 ) E. SC JJ HODI:>GElc An11. d. Phys., 79, 361, 489 (1926); 80, 437 (1926); 81 , 109 
( 1926). 
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In order for a particle to follow a nonclassical trajectory and t tereby to 
exhibit the actua l phys ical properties of a wave, the part icle velocity as given 
by eqs. (8) and (12) may be generalized as follows: The velocity v appearing 
on the left of eqs. (8) and (12) is now interpreted as the instantaneous particle 
velocity, drfdt; while V 2 appearing on the r igh t is interpreted as just the clas-
sical expression appear ing in the wave equation (7). The integration is then 
carr ied out without necessarily res tr icting- t he consta.nts of integration to the 
classical values. The mot ion so prescribed will, then, in gen eral, be periodic 
with the arbitrary constant K, appearing in eqs. (13) an (1 7), entering into 
the results explicitly. Comparing eqs. (16) and (1), it is seen that experimental 
observation r equires J[ = 1/h. (cf. (9 )) . 

3'2 . Old quantum theo1·y . - The successes of the old quantum theory of 
BOHR (1°) and SoM:J\'fERFELD ( 11 ) are not properly taken into account by the 
traditional theory; since the old quantum theory permitted a completely 
causal view with point particles following discrete classical traj ectories, while 
the traditional theory rejects such a view. The theory proposed here reduces 
to the old quantum theory for the geometrical-optics approximation. In order 
for the geometrical-optics approximation, eq. (17), to represent a standing 
wave, it is necessary for the period of the claRs ieal mot ion to be compat ibl e 
with the period of the wave, or KA(t 1 ) = 2nn, where n is an integer and where 
A(t1 ) is the action evaluated over a period of the mot ion, eq. (15), where t1 -t0 

is the classical period of the motion. But JL-t(t,) = 2nn is just the old quantum 
condition, where ][ = 1/h. 

3'3 . Separation of the wave equation into equations in space and time. - For 
stationary waves IJ'(r, t) may be wr itten as the product 'lfJ(r)T(t), eq. (10 ). 
Postulating that the space function 'lfJ( r ) sat isfies the time-independent Klein-
Gordon equation 

(20) 

or the time-independent Schro dinger equation, whic-h may b e deriYed from 
eq. (20) in t he nonrelativistic limit, 

(21) 

then from eqs. (10) and (6) the time fun c-tion T(t) is found to 

(22) 

where (p is t he classical value in term!' of t he time. 

( 10 ) N. B omc Phii. Jllag., 26, l (1913 ). 
(11 ) A. SOi\BIERFELD: Ann. d. Phys., 51 , l (19l6 ). 
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The quantum conditions remain the same as in the traditional theory, 
since these conditions depend only upon eqs. (20) or (21) an the boundary 
conditions. The t ime function T(t), representing periodic motion, is not required 
to satisfy initial and final conditions; so that it yields no quantum conditions. 

3'4. Boundaries only.- For a particle moving under the influence of bound-
aries only no potential need be explicitly included in eqs. (20) or (21); and p ·v, 
which is to be given the classical value in eq. (22) is a constant of the motion. 
The time function T(t), satisfying eq. (22), becomes simply 

(23) T(t) =sin (p ·vtfli) =sin [e(1- m2c4je2)tfli] 

This result, eq. (23), yields the traditional result for photons, but yields twice 
the frequency of t he traditional nonrelativistic theory. 

3'5 . Observed particle distributions. - Defining the quantities S and P, 

(24) 1 
S = (li jm)(P2 \lPl - P1 \l'P2l , 

P = (lifmv2 )('Pl J'P 2fat-lf'iJPlfat), 

where 'P1 and P 2 are two linearly independent solutions of the wave equation (7) 
and assuming that V 2 is not an expli cit function of the time, it may be seen 
from eq. (7) that they satisfy the equation of continuity 

(25) 2P fat + v . s = o . 

For a free-space traveling wave two linearly independent solutions of eq. (7 ) 
are 

(26) 'P1 = · (r -vt) jli]. 
2 

Substituting eqs. (26) into eqs. (24), the quantit ies S and P become 

(27) S = (p /m)a 2 , 

Since a 2 is Lorentz-invariant and since S = vP, it is possible t o associate P 
with the observed particle density and S with the observed particle flux (cf. tra-
ditional theory (1 2 }) . The fact that Lorentz invariance of the phase in eq. (26) 
is limited to values of r and t on the particle trajectory does not restrict the, 
complete covariance of the resulting particle flux-density defined by S and P 
eq. (27) . 

(1 2) L. I. Quantum Jlec lwnics (Kew York, 1949), pp. 2 1, 307. 
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For the bound particle case the linearly independent solutions of eq. (7) are 
given by eq. (10) where only t he time parts need be linearly independent; thus, 
P1 = 7p( r)T1(t) and P 2 = 7p(r)T2(t). From eq. (22 ) t he Wronskian of T 1 and T2 

is a constant, (p ·v) fn. The net (or time average) particle flux and particle 
density from eq. (24) then becomes 

(28) 8 =0, 

in agreement with traditional theory. Observed particle distributions are, 
thns, compatible with the present causal interpretation; and an assumption 
of inherent indeterminacy is not required, in agreement with BOIDI (13

) and 
DE BROGLIE (14). 

3"6. Motion in one dimension. - Assuming that the solutions to eqs. (22) 
and (20) or (21) are known, the velocity of a bound particle may be obtained 
from eq. (12). Multiplying both sides of eq. (12) by the known classical expres-
sion (p ·v) 2 = (v jo )2 [ (e- V) 2 -m2o4], replacing r by x, and rearranging, the 
specification of th traj ectory in one dimension becomes 

(29) [(e- V)2- dx = [(p ·v)2T j (dT fdt) ] dt. 

From e qs. (22) and (20) or (21) it m.ay be seen t hat eq. (29) is immediately 
integrable, yielding the desired trajectory 

(30) 7p ' (x) j7p ' (x0 ) = T ' (t) /T ' (t0 ), 

where primes denote differentiation. 
If only an approximate solution to eq. (22) is known, then eq. (30) cannot 

be used and eq. (29) must be integrated directly, since the aproximate solution 
is not, in fact, a solution to the differential equation . Thus, for the interesting 
geometrical-optics approximation, T R:; sin [A(t) fn], were A(t) is t he classical 
action, eq. (15), the approximate t rajectory from eq. (29) becomes 

(31) 7p '(x ) R:;7p'(x0 ) cos[A(t) fn], 

where A(t0 ) has b uen chosen equal to zero or integral multiple of 2nn. 

( 13 ) D . B OHM : Causali ty and Chance in liiodern Physics (P rinceton, K. J. 1957). 
( 14 ) L. DE BROGLIE: Nonlinear Wave -"lfechrmics, a Cattsal I nterpretation (Amster-

dam, 1960). 
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4. - Examples. 

4 ' 1. F1·ee particle. - In contrast to the t radit ional quant um theory a free part icle 
need not be represented here by a unique wave function such as eq. ( 1). For example 
t he wave function for a particle in a box [this example was presented in a previous 
paper (3 )] yields the trajectory of a free particle when t he boundari es of the box are 
removed to infinity and t he initial conditions are appropriately chosen. The simplest 
traveling-wave fun ction for a free particle, satisfying eq. (7 ), is 

(32) 'Jf = x-v0 t, 

where v0 is a constant. It may be seen by substitut ing eq. (32 ) into eq. (8) and 
integrating t hat eq. (32) does, in fact, yield the t rajectory of a free particle. Moreover, 
any function of t he argument given eq. (9) also represents a free particle. 

If no boundary conditions are imposed a standing wave may also represent a free 
particle. The simplest such solut ion of t he form spec ifi ed by eq . (10) and atisfying 
eq. (7) is given by 

(33 ) 'P = (X - .7'0)t, 

where :r0 is a constant. Substituting eq. (33) into eq. (12) and integrating yields 

( 34) J' = .t'0 ± vt , 

where J' = .r·0 when t = 0 and v is a constant . The two possible directions of motion indi-
cated in eq. (34) were to be expected for a particle t raj ectory represented by a standing 
wave. 

4' 2. Reflect ion from a plane 

,1. y 

e 

X 

m irror 
F!g. 1. - Co-ordinates an d geometry 
for a particle r eflected from a plane 

Jnirror. 

mirror. - To obtain the complete trajectory of a 
particle reflected from a plane mirror, not only in the 
incidence region and in t he region of interference, but 
also in the region of reflection, would require the 
consideration of waves of finite lateral extent as stres-
sed b:r nE BROGLIE (14 ) . Here only t he motion in 
t he region of interference will be considered. Co-or-
dinates and geometry are chosen as indicated in Fig. l. 

Adding t he incident and reflected plane waves 
of the form specified by eq. (1), the wave function 
fo r a nonrelat ivistic particle in the region of inter-
ference becomes 

(35) 'P = 2 sin (p. y j n) sin [(Px·r - 2Et) j n]; 

where t he phases have been chosen so t hat 'P >anishes on t he mirror and where 
Px= JJ sin 0, and Pu = p cos 0. 

The velocity of the particle is specified eq . (8) for t he unbound motion in the x 
direction and b:r eq. (12) for the bound motion in t hey direction . Subst it ut ing eq. (35) 

... -... ., 
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into (8) a nd integrat ing, 

(36) 

ubstit ut ing eq. (35) into eq. ( 12 

(37) 
ely 
dt 

ubstit uting .r as given b:r eq. (3 
direction is given by 

(38) cos (p.y j li) = ' 

This result, eq. (38 ), p rescribes 
motion as t hat of a part icle in a l: 
cept that P!fm is not quantized. 
posed upon t he uniform mot ion 
direction , eq. (36), is t he oscillato 
in t he y direction, eq. (38), as dia: 
Fig. 2. These results ma:r be comp 
the horizontal straight line t raject 
by DE BROGLIE (14 ). 

From eqs. (2 6), (27 ) and (35 ) 
rally occurring particle density is 
correspond to t he intensit;- of 1\'ein 

4'3. S imple harmonic osc illate 
is given by Schrodinger·s equatic 
differential eq. (22) . Substi t ut ing 
is a constant, into Schrodinger'; 
where n is an integer when t he 1p 

function becomes 

(39) 

where y is the numeri cal distance, 
From the classical expression 

(40) 

the differential equat ion (22) for 

(4 1) (h2 i'J' / 

This differential equation (41 ) is r 
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into (8) and integrating, 

(36) J. = J·o + Px tfm. 

ubstitut ing eq. (3 .5) into eq . ( 1:2) gives 

(37 ) 
dy 
dt 

Pu ctg (py y f h) 
1n ctg [(p,x- 2Et) f h] 

Substit ut ing .r as giYen by eq. (36) into eq. (3 7) and integrat ing, the motion m t hey 
direction is given by 

(38) COS (p. y f li) = COS (Pu Yof h ) COS [(px.r0 - P! tf m )/h]. 

This result, eq. (38), prescribes t he same 
mot ion as t hat of a parti cle in a box (3 ) ex. 
cept that pz/m is not quantized . Superim· 
posed upon t he uniform motion in t he x 
direction, eq. (36), is t he oscillatory motion 
in the y direction, eq. (38), as diagramed in 
Fig. 2. These results may be compared wit h 
the horizontal straight line trajectory found 
by DE B ROGLIE (14 ) . 

From eqs. (26), (27 ) and (35) the natu. 
rally occurring particle density is fo und t o 
correspond to t he intensity of \Yeiner frin ges. 

---1 hp jp' 
' y 

F ig. 2. - T wo possible trajectories for a par-
ticle r eflected fr om a mirror. The dashed line 
portions represen t the uncertain transit ion from 

free waYcs to interfering waves. 

4·3. Simple harmonic o ciUator . - The fun ction 1p(x) fo r t he nonrelat ivistic case 
is given by Schrodin ger 's equation (2 1), and the t ime fu nction 'l'( t ) is given by t he 
different ia,! eq. (2:2 ). Substit ut ing t he classical potential energy, r = lnw2x 2/2, where w 
is a constant, into Scbrodinger 's equation (2 1) y ields t he eigenvalues E = (n + t)hw 
where n is an integer when the 1p function is assumed to vani sh at infin ity. The space 
function becomes 

(39 ) 

where y is t he numeri cal di stance, y = (mwf n)l.r, and He, is t he Hermite polynomial (15 ). 

From t he classical expression 

(40) p ·v = 2E sin 2 wt, 

the different ial equation (:22 ) for t he t ime fun ct ion become8 

(41) 

This different ial equation (4 1) is a special case of Hilrs general different ial equation . 

( 11 ) L. and E . B . \ VJLsox: Introdu ction to Qtumlmn (Xew York, 1 9a5), p. 67 • 
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Here it will be sufficient to consider the geometrical-optics approximation which is 
valid for 2E/ Iiw » 1 or 2n + 1 » 1. In this case the approximate solution of eq. (41) 
from T""' sin [.A(t)/ li), ( 15), a.nd ( 40) becomes 

(42) T sin [(E/21iw)(2wt- sin 2wt)], 

the choice of t he sine as opposed to the cosine being arbitrary. In the neighborhoods 
of the maxima and minima eq. (42) becomes exact. Ignoring the slow oscillations asso-
ciated with the classical motion the rapid quantum-mechanical motion represented 
by eq. (42) becomes, on t he average, 

(43) '1' (Et/h), 

which is the time variation assumed in the traditional theory. This average frequency 
in eq. (43) is one half the frequency associated with a free particle, eq. (1) in the nonrela-
tivistic limit. 

Sub t it uting. eq. (42) into eq. (3 1) the traj ectory of the part icle is approximately 

(44) 'P:,(y) = cos [ (E/21iw)(2wt - sin 2wt)], 

where primes denote differentiation and where 1p;.(y) is given by eq. (39). The motion 
prescribed by eq. (44) may be conveniently analysed b y resorting to the classical device 
of a fictitious potent ial defined by 

(45 ) 

thus, 

(46) 

This function is shown on the left in Fig. 3 for n = O, 1 and 2 and various init ial posi-
tions y0 • Like the problem of a particle in a box (3 ) t he motion is cellular, the particle 
being confined to one of n+ 1 possible cells. 

The inside cell boundaries, y = a;, where the fictitious potential, eq. (46) is positively 
infinite, are given by t he zeros of 'Pn or from eq. (39) by the zeros of the Hermite poly-
nomial, H en (a; )= 0 where j < n. Differing from the particle in a box, the outside cells 
a.re not bounded on the outside by an infinite fictitious potential. Kevertheless, there 
is still a maximum choice for Yo. E'or values of Yo greater than this maximum the 
fictitious potential remains less t han unity for all values of y > y0 , so t hat the particle 
le!llves for infinity. From eq. (46) it may be seen that this critical value of Yo is given 
for a maximum or for 'P: = o. From Schrodinger's equation (2 1) this means tor 
(E - V) 'Pn = 0; but since 'Pn =f. 0 for t his region, t he outside boundary is given by 
E- V = 0, or just the classical displacement. This result, which is compatible with 
macroscopic observations, differs from the traditional quantum theory which allows 
the part icle to range to intinity . 

Like the particle in a box each cell contains a point of stagnation where the partirle 
remains at rest if it is initially there with zero velocity . This compares with the 
stagnation DE BROGLIE (14 ) obtains for aU bound particle trajectories. From eq. (44) 
these points of stagnat ion, y = y0 = b;, are given by where j < n. As was to 
be expected t hese points occur at the maxima of 
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F ig. 3. - Approxim ate fictitious potent ia 
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the right arc cur ves sketched to eliminat 
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The tmning points of the moti. 
for U = E, are y0 and where I I 
were exact, could be obtained 
approximate nature of eq. (46) it 
of turning points, 

(47) 

the points being ordered as follo" 

(48) 

the reverse order being t aken for 
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Fig. 3. - Approximate fictitious potential U, cq . (45), for the simple harmonic oscillator for n = 0,1 
and 2 and various initial positions. On the left i s plotted cq. (4G) for various initial positions. On 
the right arc cur>es sketched to eliminate the artificial jump discontinuities and to show the classical 

potential for coalescence. The uppermost curves show stagnation. 

The turning points of the motion as deduced from eqs. (44) and (46), which occur 
for U = E, are Yo and where I I > I y0 I and is in the same cell as Yo. If eq. ( 46) 
were exact, could be obtained from Yo by setting but clue to the 
approximate nature of eq. (46) it is necessary to introduce an approximate matching 
of turning points, 

(47) 

the points being ordered as follo\\·s: 

(48) 

the reverse order being taken for points to the left of the origin. This choice o[ 
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eq. (47), introduces a jump discontinuity in the fictitious potential (indicated on the 
left in Fig. 3) but it permits all points to be accessible to the particle. The curves on 
the right of Fig. 3 have been sketched to eliminate this artificial jump discontinuity. 

Since macroscopically a particle is observed to cross cell boundaries as it travels back 
and forth, there must be some choice of the initial conditions that permit this motion. 
As in the case of a particle in a. box (3 ), if the initial position y0 is taken on a cell 
boundary a;, then the particle will be able to pass from cell to cell and macroscopic 
motion will result. In the limit as y -+ a; and Yo = a;, using !' Hospital's rule and 
Schrodinger's equation (21), the approximate fictitious potential eq. (46) reduces to the 
classical potential, U R! V(a;)- The inside cell boundaries, thus, no longer have an 
infinite fictitious potential for this choice of y0 , and all of the cells coalesce. The lowest 
curves on the right in Fig. 3 show the classical potential energy as an approximation 
for the coalescence of the cells. 

The uppermost curves for stagnation are exact and are the same on the right as 
on the left in Fig. 3. 

Macroscopically the period is just the sum of the periods for each of the n + 1 cells 
(considering coalescence). From eq. (43) for the period of the average cell t he macro-
scopic period becomes 

(49) (n + 1)(2nli/E) = 2n(n + 1)/(n + t)w, 

which is seen to be the correct classical period as n -+ oo. 

5. - Discussion. 

When boundaries are removed to infinity, when potentials are allowed 
to go to zero, or when the mass of a particle becomes macroscopically large, 
the theory proposed here yields a correspondence between bound quantum-
mechanical motion and free classical particle motion (for the appropriate 
initial conditions). Not only does the traditional theory fail to establish such 
a necessary correspondence, but the causal theories of de Broglie and Bohm 
also fail {bound particles never move) as pointed out by Er STEIN (16·17 ) . 

The present theory displays the known empirical facts in a self-cosistent 
classical causal framework. There has been no attempt to speculate about 
possible underlying physical mechanisms that could cause boundaries and 
potential fields to produce the observed quantum mechanical motion. 

The prediction of new experimental results may be possible. For example, 
a particle executing simple harmonic motion is confined within the classical 
limits according to the theory presented here in contrast to the traditional 
theory which permits the particle to range to infinity. Consequently, there 

( 16 ) A. EINSTEIN: in Scientific Papers Presented to Max Born (New York, 1953), 
p. 33. 

( 17 ) K. R. POPPER: Logic of Scientific Discovery (New York, 1961), p. 448. 
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should be a small difference in the normalization constant predicted by the 
two theories. This small difference in the normalized wave functions means 
that there may be a small difference for transition probabilities and 
thus, a small difference predicted for the intensities of lines in vibrational spectra . 

R I ASSUNTO (') 

Si propone una teoria relativistica della meccanica quantica causale per una parti-
cella scalare, in cui la velocita di fase e uguale alla velocita della particella. Si considera 
la particella come una particella puntiforme classica che si muove lungo una normale 
all'onda t angente ad una superficie di fase costante. Si deduce una condizione per le 
traiettorie della particella in onda stazionaria che nel caso della particella legata da 
origine a moti periodici. Nell'approssimazione dell'ottica geometrica si ottiene la vecchia 
teoria quantica di Bohr e Sommerfeld. La densita osservata della particella e l'inten-
sita dell'onda (in accordo col 'P'I'* della teoria tradizionale). Si studiano i problemi 
di una particella libera, di una particella riflessa da uno specchio e del\ 'oscillatore 
armonico semplice. 

(•) Traduzione a cura della Bedazione . 


