
P H YSI CAL REVIEW VOLUME 122, NUMBER 6 JUNE 15, 1961

Classical Interpretation of Quantum Mechanics*

JAMES PAUL WESLEY
Lazorezzee Radzatzozz Laboratory, UNzoerszty of Catzforrzza, Lzoerzzzore, Catzforzzza

(Received March 3, 1960; revised manuscript received January 27, 1961)

Following de Broglie, Bohm, and others, it is assumed that quantum mechanics may be interpreted
causally and that the P function plays the role of a generating function for particle trajectories. By arguing
that the P function should not be interpreted as a probability amplitude, a new method for generating
particle trajectories is postulated. The four-momentum of a scalar particle is assumed to be given as the
gradient of an unspecified function F(P), where P is a pure real solution of the Klein-Gordon equation.
Since the location of a particle is determined solely by its trajectory, the probability distribution differs
from ~*;and therefore, ordinary experimental results differing from the traditional theory may, in prin-
ciple, be predicted. Particle motion and trajectories are discussed for three examples: a free particle, a
particle in a box, and the double slit.

I. INTRODUCTION

A X excellent review of various causal formulations
of quantum mechanics has been presented by

Freistadt. ' The theory presented here, in common with
previous causal interpretations, is in opposition to the
traditional views of Bohr' and Heisenberg. ' Funda-
mentally, the theory presented here differs from pre-
vious causal interpretations of quantum mechanics by,
first, not interpreting ib as a probability amplitude and,
second, by choosing only pure real representations for
P. As a consequence, a new method for generating
trajectories from the if' function is obtained. The tra-
jectories obtained difIer considerably from the tra-
jectories obtained in previous causal theories. Because
the probability distribution determined from the tra-
jectories is not ibib*, the theory presented here also
differs quite markedly from previous causal theories

by permitting the possibility of an ordinary experi-
mental test of its validity. It is not, consequently,
equivalent to, or isomorphic with, traditional interpre-
tations of quantum mechanics.

II. DIFFICULTIES ARISING FROM THE PROBABILITY
INTERPRETATION OF

zest

Here it is felt that the attempt to make the ib func-
tion perform double duty as both a wave function and
a probability amplitude leads to a number of difficulties
which may be resolved by relinquishing the probability
interpretation. Others have also questioned the Born
probability interpretation. 4

*Work was performed under the auspices of the U. S. Atomic
Energy Commission.' H. Freistadt, Nuovo cimento Suppl. 1D, 1—70 (1957).

2 N. Bohr, Atomzc Physics and Hzsrnan Knowledge (John Wiley
Bz Sons, Inc. , New York, 1958).' W. Heisenberg, Physics and Philosophy (Harper and Brothers,
New York, 1958).

A. George, editor, Louis de Broglie, Physicien et Penseur
(Paris, 1953), especially the contributions of (i) A. Einstein;
(ii) E. Schrodinger; (iii) W. Pauli; (iv) L. Rosenfeld; (v) W. M.
Elsasser; (vi) A. March; (vii) H. Reichenbach; (viii) M, A.
Tonnelat. This volume includes a bibliography of de Broglie s
works to 1953.

1. Wave-Particle Paradox

The macroscopic concept of a wave involves the
notion of a function which describes a physical property
continuously throughout space. The concept of a par-
ticle, on the other hand, implies that all of the proper-
ties of the particle are localized in a very small region
of space (which may be represented by a point). The
wave-particle paradox then arises when the question
is asked: How can a single propagated entity exhibit
two such completely dissimilar properties?

Assuming that wave and particle characteristics are
not intrinsically inextricable from each other, the reso-
lution of the paradox may be sought in one of four
possible ways: (1) The entity is a particle which carries
a pilot wave along with it as envisioned by de Broglie. '
(2) It is a wave which possesses a traveling singularity
which looks and acts like a particle, as suggested by
Einstein and developed by Petiau. (3) It is, in fact,
only a wave which is mistakenly interpreted as a
particle on some occasions. (4) It is, in fact, only a
particle (or collection of particles) which is mistakenly
interpreted as a wave on some occasions.

Here, (1), (2), and (3) are rejected because of the
peculiar or impossible way a wave (pilot wave, wave
with a singularity, bunched wave, or a wave packet)
would have to behave to satisfy the observations con-
cerning emission and absorption. A particle is emitted
from a highly localized region in space and eventually
comes to rest (is absorbed) in a highly localized region
in space without loss of rest mass. A classical wave, on
the other hand, when emitted from a highly localized
region in space continues to diffuse outward and can
never again be concentrated down to as small a region
in space when absorbed. This behavior is characteristic
of solutions to wave equations with commensurable
boundary conditions and is in agreement with the
second law of thermodynamics and ray optics. If it is
assumed that a wave can, in fact, collapse down into

'L. de Broglie, Une Tentative d'InterPretation Causale et non
Lineaire de la Mecanique Ondllatoire (Gauthier-Villars, Paris,
1956).

G. Petiau, Compt. rend. 239, 344—346 (1954).
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a localized region when absorbed (called a "quantum
jump" by Schrodingerr), then such a process will not
only apparently violate the second law of thermody-
namics but will also involve velocities greater than the
velocity of light. "Consequently, the resolution of the
wave-particle paradox chosen here is: (4) The propa-
gated entity is always a particle (or collection of par-
ticles) which may be mistakenly interpreted as a wave
on some occasions.

Since primitive observations or measurements of
submicroscopic phenomena involve only processes of
emission and absorption of elementary particles, it
would seem that the unobserved phenomena inter-
vening between emission and absorption should be most
appropriately described in terms of particles only.

Since the f function is assumed here to play the
single role of a generating function for.particle trajec-
tories, no physical wave is assumed to exist; and the
wave-particle paradox is resolved.

It should be noted that the solution of a wave equa-
tion with appropriate boundary condition is a wave
only in the mathematical sense; and before it can
represent a physical wave, which is defin'ed by observa-
tions and operations in the laboratory, the mathemati-
cal wave function must be identified with some physi-
cally observable property in the laboratory such as the
displacement of a rope, the density of air, the compo-
nent of electric intensity, etc. Here, the mathematical
wave properties of the |P function are not identified
with any physically observable property, and no phys-
ical wave is assumed, in fact, to exist. It is felt here
that particle probability distributions are not precisely
wavelike and that more careful experiments may
eventually be able to show this.

Since P is treated here solely as a generating function
for particle trajectories, it does not necessarily imply
the existence of a physical property defined throughout
space and, thus, does not necessarily imply the existence
of a physical wave. In precisely the same way, the
generating function obtained from Hamilton's partial
differential equation in classical mechanics does not
necessarily imply the existence of an actual physical
property defined throughout space.

2. Double-Slit Paradox

The error committed in the usual statement of the
double-slit paradox is the assumption that the slit
through which the particle does not pass will not
affect the trajectory of the particle. The paradox may
be resolved by assuming that the particle is, in fact,
strongly infIuenced by both slits while passing through
only onets (compare the trajectories found here, Sec.
VIII).

' E. Schrodinger, Natnrwissenschaften 23, 483 (1935).' L. Janossy, Ann. Physik 11, 323 (1955).' D. Bohm, Phys. Rev. 85, 180 (1952).' D. Bohm, Calsal~ty and Chmce in 3IIodern Physics (D. Van
Nostrand Company, Princeton, New Jersey, 1957).

3. Wrong Boundary Conditions

The boundary conditions placed on P that it be
continuous, 6nite, single-valued, and vanish at infinity
specify a proper wave function. But if lp were, indeed,
a probability amplitude, it would not have to be con-
tinuous, it would not have to remain finite, and it
would not have to be single-valued. It would appear
then that the wrong boundary conditions are chosen
in traditional quantum mechanics, since the very solu-
tion which is claimed to be sought is rejected at the
outset. The difficulty is removed by the theory pre-
sented here by relinquishing the probability interpre-
tation of |p.

4. Superposition Paradox

Although traditional quantum theory fails to give a
causal explanation of individual events, it is felt that
probability distributions can be explained causally by
employing the "superposition postulate. " If the
function is interpreted as a classical wave function, it
may clearly be treated as a causal phenomenon which
obeys Huygen's superposition of wavelets; but it does
not appear to be possible to attach the same causal
description to ip if it is interpreted as a probability
amplitude. For example, in the classical language of
the double-slit experiment, causality is established by
saying that the wavelet from one slit interferes with
the wavelet from the other slit to produce or cause a
particular intensity at a given point. Correspondingly,
in the language of probability it would have to be said
that the probability of finding a particle in a given
element of space and time is caused by the probabilities
elsewhere in space (in particular, is caused by the
probability amplitude functions associated with each
slit). But the probabilities of finding the particle in
other positions are probabilities associated with events
that never happened, and events that never happened
could not be said to cause the event observed. Another
example of the superposition paradox is Schrodinger's"
"cat in a box paradox. "

As a result of difficulties pointed out by Einstein,
Rosen, and Podolsky, "a number of devices have been
introduced in an attempt to resolve the superposition
paradox: A particle is not con6ned to a point but is
distributed throughout all space and experiences all
possible events; but such superpositions over all avail-
able quantum states are never actually observed, be-
cause the act of measurement forces the system into
just one quantum state. It is not meaningful to inquire
into the nature of a system when it is not being ob-
served; etc. Although these devices may appear to
resolve the superposition paradox, they are, neverthe-
less, neglected here because they do not seem to permit,
in principle, the possibility of either empirical veri6ca-
tion or refutation.

"E.Schrodinger, Brit. J. Phil. Sci. 3, 109 (1952).
"A. Einstein, N. Rosen, and B. Podolsky, Phys. Rev. 47, 777

(1935).
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The theory presented here resolves the paradox by
not attempting to give a causal construct in terms of
probabilities~ is not given a probability interpretation.

S. Question of the Aether

If light is conceived of as a causal wave in a material
medium, an "aether" is needed for radiant energy to
be transmitted across a void; but the Michelson-
Morley experiment makes the notion of an aether
untenable. In an attempt to minimize this problem, it
is frequently said that an electromagnetic wave "just
exists in empty space" and it is either "meaningless"
or "unnecessary" to speak of an aether. Here, the

difhculty is resolved by assuming that energy and mo-

mentum are transmitted by particles and not waves.
The electromagnetic field is interpreted as having no
direct physical signi6cance; the 6eld presumably de-

termines the position and polarization of a photon as a
function of time (a view shared by Nagy").

III. THE IMAGINARY NUMBER i

The imaginary number i, which appears in operators,
in Schrodinger's time-dependent equation, and through-
out traditional quantum theory, seems to be an integral
part of the traditional quantum theory. Since it should

be trivial to convert complex expressions to pure real
expressions and since lt must have the same physical
information whether expressed in a pure real or in a
complex form, the existence of the imaginary number i
in the traditional theory is disturbing. Lande" has
shown that the occurrence of the i stems from the
superposition of probability amplitudes.

Here, P is not given a probability interpretation;
consequently, it is possible to assume pure real ex-

pressions for P and to assume only the formalisms that
permit such pure real expressions.

IV. SOME OBJECTIONS TO THE DE BROGLIE-
BOHM THEORY

The theory proposed in this paper is in agreement
with the causal theories of de Broglie5 and Bohm' in
that the P function is used to generate particle trajec-
tories. The actual prescription and the trajectories,
however, are considerably different. The theory pro-
posed here does not appear to suffer from certain de-
fects in the de Broglie-Bohm theory.

The formulation of de Broglie and Bohm gives the
momentum as p=V'5, where tt =R exp(i5/A). Conse-

quently, if P is pure real, the particle remains at rest
for all time. Since there appears to be a question as to
the necessity for accepting only certain complex repre-
sentations, there would seem to be some ambiguity as
to whether or not a particle is at rest.

According to their solution, a particle in a box with

' K. Nagy, Acta Phys. Acad. Sci. Hung. 4, 327 (1955).
~ A. Lande, Phys. Rev. 108, 891 (j.957).

non-zero energy remains at rest for all time, even when
the walls are removed to in6nity. There is, thus, an
apparent failure to yield satisfactory correspondence
with classical macroscopic observations.

V. DERIVATION OF THE CLASSICAL
INTERPRETATION

A quantum-mechanical theory for a scalar particle
which is free of the imaginary number i may be ob-
tained by generalizing from the de Broglie wave.

1. The de Broglie Wave"

Accepting the Planck-Einstein frequency condition,
a physical system may be characterized by an angular
frequency co, given by

re= E/fz,

where E is the total energy of the system and A is
Planck's constant. For a system or particle whose total
energy is specified in terms of its rest mass, the fre-
quency is

(2)

This frequency may be thought of in analogy with
mass, the evidence for both co and for m being deduced
from the dynamical behavior of the system. Some char-
acteristic of the system P may be represented by the
function

/=Pe sinu&t,

where real, rather than the usual complex, representa-
tion has been chosen. If the system or particle is
translated with a uniform velocity v a stationary ob-
server will view the characteristic as

4'=4'o sin[re(t —v r/c')/yj, y= (I—r'/c')'*, (4)

according to the special-relativity time transformation
where ate has been assumed to be invariant. Using Eq.
(2) and the relations

p =mv/y, 8=mc'/y,

Eq. (4) may be written in the form

&=Pe sin[(p r—Et)/Aj, (6)

where, for the present case, p and E& are constants. This
result, Eq. (6), represents a traveling wave with the
phase velocity c'/v and the group velocity rt.

2. Klein-Gordon Equation

Since Eq. (6) is a wave function, the results may be
generalized by considering solutions of a wave equation
that satisfy appropriate boundary conditions. This
postulated generalization introduces the concept of
boundaries acting on and determining the motion of
particles. It might be speculated that the boundaries
set up some sort of static field with which the particles

"L.de Broglie, Arm. Physik 3, 22 (1925).
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have a phase-dependent interaction. The simplest rela-
tivistically invariant wave equation which is satisfied
by pure real sine or cosine representations is the Klein-
Gordon equation

V'p 8—'p/8 (ct)' = (mc/A) ip, (7)

3. Syeci6cation of Trajectories

It is postulated that the trajectories of a relativistic
scalar particle may be generated from the known
eigenvalue-eigenfunction solution of Eq. (7); thus,

p= p[A, B,Cp/i(r, t)], E=E[A,B,C,P(r, t)], (9)

where 3, 8, and C are the three eigenvalues and
II (r, t) is the known eigenfunction. It is assumed that
the position of the particle as a function of time may
be obtained by dividing these four simultaneous first-
order differential equations two at a time and inte-
grating. This process will introduce three constants of
integration, apart from the initial time which may be
taken to be zero. These three constants together with
the three eigenvalues, A, 8, and C, specify the requisite
(in the Newtonian sense) six constants of the motion.

There appears to be no way the functions in Eq. (9)
can be chosen uniquely. The simplest specification (for
a scalar particle) appears to be given in terms of a
single scalar function F(II) by letting p and E form the
four-vector

p=F'V'P, E= F'BtP/Bt, —

where the primes denote differentiation with respect to
It. This choice has been indicated by the differential
Eq. (7). Using Eqs. (10) and a number of identities,
Eq. (7) may be rev. ritten in the form

A'F" (c'V' p+ BL~'/BI)+A'F" ( c'P'+E') =m'—c'F"tP. (11)

In the macroscopic limit a,s A —+ 0, Eq. (11) should re-
duce to Eq. (8), or

A'F"/F"g 1,

where the first term on the left of Eq. (11),which may
be compared with the conservation of mass-energy
expression for a relativistic Quid, "vanishes as A. Since
Eqs. (10) are to be divided two at a time to obtain
integrable expressions, the explicit form of F(f) (which
can always be obtained after integration) is a matter
of indifference.

where the constant term on the right has been included
so that when the solution, Eq. (6), is substituted into
Eq. (7) the relation

—p'+ E'/c'= tr4'c'

is obtained in conformity with Eqs. (5).

5. Klein-Gordon Equation with a Potential

To extend the theory to include a potential, the case
of a charged particle in an electrostatic field is con-
sidered. Assuming a time harmonic solution, Eq. (3),
with an angular frequency E/5, Eq. (7) becomes

c'A'V''iP/iP+ E'= m'c4. (13)

The macroscopic energy equation for a charged particle
in an electrostatic field is

—c'p'+ (E eg) 2 =m'c'—
where P is the electrostatic potential. Thus, one is led
to postulate the time-independent relativistic wave
equation"

h'cV'i/+ (E—eg)'iP =m'cQ. (15)

For any potential function V, Eq. (15) may be general-
ized to yield

.4. Interpretation of i'
The theory presented here does not yield any simple

identification of the f function with any physically
observable property such as is provided by the tradi-
tional probability-amplitude interpretation (which has
been rejected here). The mathematical wave properties
of the 4p function are not identi6ed here with any
physically observable wave properties. In fact, it is
felt that no physical wave actually exists and that,
eventually, experiments may be able to demonstrate
this by discovering that the particle probability dis-
tribution is not given precisely by the traditional
expression if'*.

The mathematical wave function iP has been inter-
preted here solely as a generating function for particle
trajectories; consequently, there is no need to assume
that any actual physically observable property exists
throughout all space or that a physical wave actually
exists. If a physically significant interpretation of
It is desired it can, in principle, always be obtained
from Eqs. (10), (11), and (12); since these equations
relate the generating function It to the observables.
However, such a physical interpretation of the tP func-
tion may be superfluous (compare the Hamilton-
Jacobi generating function in classical mechanics). Even
though it is true that the ip function, as well as the
Hamilton-Jacobi function, contains all of the pertinent
physical information and is intimately dependent upon
physical conditions, it does not appear to be necessarily
fruitful to relate such a generating function directly to
physical observables.

c'A'PP+ [(F P')' —m'c']tP= 0. — (16)
'6P. G. Bergmann, Introduction to the Theory of Relativity

(Prentice-Hall Iric. , Englewood Clips, New Jersey, 1942), p. 125,
Kq. (8.&3).

~7 L. I. SchiR, QNgntgns Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1949), p. 306—309.
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(F. V)—' zz—z'c4 =2zzzc'(E' V—), (17)

where E', the total nonrelativistic energy, and U are
small compared with the rest mass energy. Substituting
Eq. (17) into Eq. (16), dropping the prime, then gives
the Schrodinger equation

lz'Pg+2zzz(Z —V)it =0. (18)

This approximation does not imply that Eq. (18) is
independent of relativistic effects, since de Broglie's"
work indicates that quantum effects result, in part, as
a consequence of relativity. This derivation of Schrod-
inger's equation makes it possible to assume pure real
sine and cosine representations for the time harmonic
solution instead of the complex representation required
by traditional quantum theory.

'7. Trajectories for a Nonrelativistic Particle

The angular frequency in the relativistic case as well
as the nonrelativistic case, Eq. (18), has up to this
point been given by the Planck-Einstein frequency
condition using the total relativistic energy, Eq. (1).
-Separating the energy into the rest mass energy plus
the total nonrelativistic energy, it is assumed that the
very rapid fluctuations associated with the rest mass
energy average out and produce no net observable
effect in the present nonrelativistic limit. The time
variation to be used in conjunction with Eq. (18) may,
thus, be assumed to be given by

sin(Et/5) or cos(Et/5), (19)

where E is now the nonrelativistic total energy.
Since the relativistic momentum reduces continu-

ously to the classical momentum in the nonrelativistic
limit, the first of Eqs. (10) may be used to obtain the
momentum from the solution of the Schrodinger Eq.
(18). From Eqs. (19) it is apparent that the second of
Eqs. (10) may be used if the energy on the left is now
interpreted as the classical total energy. Thus, formally
the identical Eqs. (10) may be used to specify the
trajectory of both a relativistic and a nonrelativistic
particle.

Since the present total energy may be either positive
or negative, whereas the relativistic total energy was
always positive, an ambiguity in sign has been intro-
duced in the nonrelativistic limit. The nonrelativistic
total energy enters into Eqs. (19)merely as a magnitude
to specify the unsigned period of the motion. It is found
that for a free particle the sign in the second of Eqs. (14)
need not be changed, but for a bound particle the tra-
jectory should be specified by the prescription

p=FVP, iEi =F'8$/R. (20)

6. The Schrodinger E(Iuation

To derive Schrodinger s nonrelativistic time-inde-
pendent equation, the bracket appearing in Eq .(16)
may be written

In the present nonrelativistic limit the momentum
is given by the Newtonian expression

p=zzzdr/dt. (21)

The trajectory of a nonrelativistic particle may be
found by dividing Eqs. (10) Lor Eqs. (20)j two at a
time, using Eqs. (21), and integrating.

where the weighting function f(rp) may remain un-
known for some problems and where Vo is the volume
of all possible initial values. Since this integral function,
Eq. (24), depends upon the trajectory of the particle,
r(rp, t), it can be evaluated only after the solution to a
particular problem has been obtained. There are no
requirements (as is the case for ~*) that this function
be regular; it may be infinite, discontinuous, and
multiple valued. It is assumed, however, that it must
always be integrable over all r' space to unity.

Because of the many successful conclusions which

VI. PROBABILITY DISTRIBUTION

Experimentally, the initial conditions for submicro-
scopic particles are never known exactly, and many
particles with many different initial conditions are ob-
served. The raw data of an experiment then becomes a
distribution function which is referred to as a "proba-
bility" distribution function. The classical probability
per unit volume of finding a particle (or the center of
mass of a small body) at a given point r' and at an
instant t is given by the delta function

I p= 8Lr —r(rp, t)j, (22)

where r(rp, t) is the position of the particle as a function
of time and the initial position ro.

Assuming an indefinitely large number of observa-
tions, the time average probability becomes

p 4(ro)

Pg= b(r' r(rp, t) jdt—, (23)
to(ro) —ti(ro) ~ ~z(ro)

where the limits of integration are chosen so as to
permit a proper time average.

Assuming that observations are made in ignorance
of the initial position, it is then of interest to average
over all possible initial positions. Hut since it may not
always be possible to assume that all initial positions
are equally accessible to the particle, as is usually the
case in macroscopic mechanics, it is necessary to in-
clude a weighting function f(rp). instead of ~*, the
probability distribution function according to the
present theory then becomes

1
F(r') =- — —d'ro

Vo "vo to(ro) —ti(ro)

&&s(ro)

X, &fr' —r(ro, t) jdt, (24)
~ )1(r0)
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have been obtained by assuming f to be a probability
amplitude, it is clear that Eq. (24) should be quite
similar to Itst*. In principle, it should be possible to
determine the difference between ~* and Eq. (24)
experimentally.

thus,
sin(nm. x/L), m=1, 2, 3, (32)

where the normalization factor has been neglected.
The energy eigenvalues are

VII. FREE PARTICLE E,=m'A'e'/24trL' (33)

pp
——(2mE) & =mnp. (26)

Substituting Eq. (25) into Eqs. (10) then gives the
momentum equations,

The solution to Schrodinger's nonrelativistic Eq.
(18) I appropriately combined with Eqs. (19)] for a
free particle traveling in the positive x direction is

It = sinL(Ppx —Et)/kj,

where an additive phase constant has been neglected
and where

Multiplying Eqs. (31) and (32), substituting into Eqs.
(20), where E has been replaced by 2E, and using Eq.
(21) yields

rr4CX/dt =F'(Nrr/L) Sin(2Et/h) COS(r4wX/L),
(34)2E= F'(2E/A) cos(2Et/A) sin(nwx/L).

Dividing Eqs. (34) and integrating gives the desired
equation of motion,

cos(rex/L) =cos(mmxp/L) cos(2Et/A). (35)

2. Fictitious PotentiaP'
p=F'(pp/5) cosI (ppx —Et)/A],
E=F'(E/i't ) cos$(ppx —Et)/& J.

(27) To analyze the motion, it is convenient to introduce
the fictitious potential U defined by

Dividing Eqs. (27) and using Eq. (21), the differential
equation of motion becomes

p =mdx/rtt = tpt'pp. (28)

Integrating Eq. (28) then yields the expected trajectory

x=npt+xp. (29)

It is of interest to note that Eqs. (25), (27), and (29)
are also valid in the relativistic case if E is interpreted
as the total relativistic energy and f is regarded as a
solution to the Klein-Gordon Eq. (7). Here, instead of
Eq. (28) the velocity in terms of the energy, Eqs. (5),
becomes

np
——c(1—m'c4/E') &. (30)

It is also possible to obtain the free-particle tra-
jectory from a bound particle as boundaries recede to
infinity or potentials go to zero. Since a particle that is
actually observed is a particle that has been captured
or otherwise seriously interfered. with, it is perhaps
more realistic to assume that bound-particle problems
have the greater physical significance.

sin (2Et/A). (31)

1. Position of the Particle as a Function of Time

The space part of It is given by the solution" of
Schrodinger's Eq. (18) which vanishes at x=0 and L;

' I. Pauling and E. B. Wilson, Introduction to Quentlm 3Ee-
chulics (McGraw-Hill Book Company, Inc. , New York, 1935),
p. 97.

VIII. PARTICLE IN A BOX

Because of the confinement between the walls of the
box, the motion of the particle is repeated every half
cycle instead of every full cycle; and the time variation
is taken as

Nwh sin'(rtprxp/L) I
g= 1—

mL sin'(rpprx/L)
(37)

Squaring Eq. (37) and substituting into Eq. (36), the
fictitious potential becomes

U =E sin'(m-xp/L)/sin'(wax/L). (38)

The oscillatory motion is now analyzed in terms of
the particle moving in the presence of the potential
given by Eq. (38).It is clear that the fictitious potential
U is not a potential in the ordinary sense, since it
depends upon the initial position of the particle xo as
well as the boundaries of the box. A few of these po-
tential curves are shown in Fig. 3.. Because of the
choice of the phase in the time function, Eq. (31), the
initial velocity is zero. This means that the initial
position xo has been chosen as a turning point of the
motion. In one-dimensional motion only two initial
conditions are needed; and since the total energy has
already been specified as an eigenvalue, only the initial
position or the initial velocity need be specified in
addition.

3. Cellular Motion

By examining Eq. (38) or Fig. 1, it is seen that
(except for xp=sL/m, where s=0, 1, 2, , t4) the mo-

"This simple device from classical mechanics, which is used to
illustrate a solution already obtained, should not be confused with
Bohm's quantum potential, U= (—t4'/2m)(V R/R) where f=R
exp(iS/5).

20 The present dynamical solution may be contrasted with the
static solution of de Broglie and Bohm where the particle in a
box remains rigidly fixed for all time.

U= E mx'/2, —
where the dot indicates differentiation with respect to
time. Differentiating Eq. (35), the velocity may be
expressed as a function of position, " .
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to x and integrating, dropping primes, we obtain

P(x) = (2E/vrAL) dxp
f(xp)

~

x'(x, xp) )

&&(Nt x—xp] —n$x+xp —(2s+1)L/n]}, (44)
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Fro. 3. The individual-particle probability for a particle in a box,
Eq. (46), for various initial positions xp and a= I and 2.

P(x) = (2n/L')
~
sin(nox/L)

~
dxp f(xp)

&& I
sin'(ns. x/L) —sin'(ns. xp/L) j &, (45)

where the factor 2 has been included to take care of the
equivalent contribution from xp ———x+(2s+1)L/n to
xp ——(s+1)L/n.

The probability distribution for a single particle for
a particular choice of the initial position xp may be
obtained by omitting the averaging integration over
xp, thus from Eqs. (44) and (37),

where s=O, 1, 2, , (n —1) is the cell in which the
motion occurs and where N(x —xp) is the unit step
function which is 0 for x &xp and 1 for x& xp. Sub-
stituting the value of x as given by Eq. (37) into Eq.
(44) and limiting the integration to the cell in which
the motion occurs, it is found that

I

I

I

I

0'
xo

FIG. 2. An exaggerated diagram showing how the fictitious
potential U is assumed to vanish as the initial position xo ap-
proaches a cell boundary.

P(x,xp) =—
I sin(ns x/L)

~I.
QLx —xpg —N(x+ xp —(2$+1)L/ngx

Lsin'(ns x/L) —sin'(nxxp/L) j&

This function, Eq. (46), is shown in Fig. 3.
To evaluate the integral in Eq. (45), it is necessary

to specify the function f(xp). The only restriction on
the nature of f(xp) appears to be an integrability re-
quirement which may be obtained by integrating P(x)
from x=0 to I. and setting the result equal to unity.
Thus, from Eqs. (44) and (37) it is possible to obtain
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I/L

Fio. 4. 'The many-particle probability distribution for a particle
in a box, Eq. (49), for n =3. The dashed line gives ~", Eq. (50),
for comparison.

the expected condition

(= (R,+R2)/D, g= (Ri—R )/pD,

the asymptotic wave function, Eq. (51), becomes

(52)

parameters for the double slit problem. Some of the
physics may, however, be investigated by considering
the asymptotic solution for a plane wave incident
normally upon a screen with two infinitesimally narrow
slits separated by a distance D. Because of the cylin-
drical geometry, the asymptotic solution is taken to be

it -Ri-1 sing(ppR, —Et)/hg
+Rp '* sin&(ppRs —Et)/&&, (51)

where pp is given by Kq. (26) and Ri and Rs are the
distances from the two slits to the point in question.
Again, only a pure real representation has been chosen.
A normalization factor has been omitted in Eq. (51).

Introducing elliptic cylinder coordinates,

L

(1/L))~ dxp f(xp)=1.
0

(4 t) where
(1/$'*) sin(kf —cot) coskrt, (53)

k =PpD/2& = (2mB) ~D/25, cp =E/A. (54)

Macroscopically, it can be assumed that all initial
positions, xp, are equally likely, or f(xp)=1. With this
macroscopic assumption, it is of interest to compute
the probability distribution that results. Setting f(xp)
= 1 in Eq. (45) and changing the variable of integration
from xo to m where-

sin(nprxp/L) = sin(nprx/L) sining, (48)

the integral is seen to be the complete elliptic integral
of the first kind"; which gives the result

F(x)= (2/rrL) (sin(nprx/L)
~
E[sin(n7rx/L)] (49).

This probability distribution function is shown in Fig. 4
for m=3 together with the traditional quantum me-
chanical expression,

~*=(2/L) sin'(nm x/L), (50)

where f has been obtained from Eq. (32) by including
an appropriate normalizing factor. Despite the func-
tional and numerical differences between F(x), Eq.
(49), and tilt*, Eq. (50), it is interesting to note some
of the similarities. Both the present theory and the
traditional quantum theory yield the same number of
cells, the same points of zero probability, the same
points of maximum probability, and, of course, the
same area under the curves. Contrary to traditional
quantum theory the present theory, with f(xp) chosen
as unity, yields infinity at the points of maximum
probability.

IX. DOUBLE SLIT

1. Wave Function g
It is extremely difficult to obtain a solution of

Schrodinger's Eq. (18) adequate for all ranges of the

"P. Franklin, 3Eethods of Advanced Calculus (McGraw-Hill
Book Company, Inc., New York, j.944), p. 274.

2. Particle Trajectories

In elliptic cylinder coordinates, the momentum ac-
cording to Eqs. (10) may be written

where

mDh, d(/dt =F'(2/Dh, )BP/8$,

mDh pdrt/dt =F'(2/Dk p) Btp/8rl,

F= F'it//Bt, —
(56)

k 2 ((2 ~2)/((2 1) k 2 ((2 ~2)/(1 ~2) (57)

Substituting Eq. (53) into Eqs. (56), noting that for
the present asymptotic limit P&)1&rP, and dividing
two at a time, the differential equations of motion for
the particle become

kd$=rpdt,

$
' tan(kg (at)dg= —(1—rt') —' cotkrtdrt. (58)

Integrating the first of Eqs. (58), the motion is found
to be uniform in the $ direction,

kg=cpt+kPp, (59)

where $p&)1 is the initial position. Substituting Eq.
(59) into the second of Kqs. (58) and considering points
near the plane of symmetry, p'&&1, the resulting ex-

To satisfy the boundary condition that /=0 for
p= &1, the quantum condition

k= (2n+1)s/2 or F.= (2n+1)'ts'pr'/2mD' (55)

must be satisfied. This condition is the same as for the
even modes (n odd) of a particle in a box of width D,
Eq. (33). A double slit thus permits only particles
with certain discrete energies, Eq. (55), to pass through.
Conditions other than Eq. (55) would apply for finite
width slits and other angles of incidence.
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pression may be integrated to yield

sinks= sinks& exp| (k tanktp)/&],
where

(60)

describes the hyperbolic trajectory for p
—+ pp.

A further insight into the motion may be obtained
by considering the time rate of change of q as given by
Eqs. (56), (59), and (60),

dg/dt = —(M/k') cotk(p tanks ln'(sin kg/sinks~). (62)

Stagnation trajectories, defined as the trajectories along
which dg/dt =0, are given by the hyperbolas

g=e~/k, x=0, &1, a2, (63)

These trajectories coincide with the observed inter-
ference maxima. Cell boundaries, defined as the curves
along which dg/dh —+ & pp, are given by the hyperbolas

g= (2e+1)~/2k, n=0, &1, &2, (64)

These hyperbolic cylindrical surfaces are the nodal
surfaces of the interference pattern. Since the particle
moves from these surfaces with infinite velocity, no
particles will be found on the nodal surfaces. The
motion is confined to the region between the nodal
surfaces (see Fig. 5).

The variation of g with time, as may be deduced
from Eqs. (59), (60), and (62), is not oscillatory. Prom
the initial position po, p varies monotonically with
time to the asymptote q&. The initial and final positions
are such that the particle moves away from the nodal
surfaces, Eq. (64), and toward surfaces of maxima,
Eq. (63).

Since the asymptotic solution is not valid in the
neighborhood of the slits, it is of some interest to indi-
cate some qualitative features of the solution near the
slits. Since the boundary conditions requires /=0 for
)=1 (as well as for g=&1), the surfaces of maxima
(and, therefore, the nodal surfaces as well) terminate
at one slit or the other and not in the region between
the slits as might be erroneously concluded from the
asymptotic solution alone, Eq. (63). From symmetry
and from the fact that a trajectory never crosses a
nodal surface, particles that pass through the upper
slit (see Fig. 5) where g=1 will always remain in the
upper half-space 0&g& 1; and particles that pass
through the lower slit where q= —1 will always remain
in the lower half-space —1&g&0.

To obtain an estimate of the particle probability
distribution function corresponding to the interference
pattern requires a knowledge of initial conditions and,
therefore, a more complete solution of Schrodinger's
Eq. (18) for all ranges of the parameters —an undertak-
ing beyond the scope of this paper.

X. CONCLUSIONS

Although the present theory appears to resolve a
number of difhculties present in the traditional quan-

!(~—

Fro. 5. A sketch to indicate how the trajectory of a particle passing
through a double slit is confined between nodal surfaces.

turn theory and suggests that submicroscopic phenom-
ena may be amenable to investigation with the fruitful
tools of classical physics, it still fails to present the
actual classical problem being solved. Although a
simple prescription for finding more-or-less reasonable
trajectories, which seem to be superior to those pre-
scribed by previous causal theories, has been given,
the classical situation that gives rise to this prescrip-
tion remains obscure,

Since the wavelike appearance of particles is assumed
here to be only approximate, eventually it should be
possible to suggest an ordinary experiment that will

distinguish between the theory presented here and
other theories. No experiment is suggested at this time
because of the difficulty, largely mathematical, in
ascertaining f(rp), Eq. (24).

The theory presented here yields exactly the same
energy eigenvalues, energy differences, and wave func-
tions as the traditional quantum theory; therefore, it
may be assumed that perturbation theory, transition
probabilities, and quantum statistics remain unchanged.
The so-called penetration of a potential barrier by a
particle, although requiring a diGerent physical in-
terpretation, can be expected to be formally similar
to the traditional quantum theory. The present theory,
in common with all causal theories, requires an ex-
planation for the apparently random emission of radio-
active particles —contrary to the traditional theory
which assumes the radioactive decay process to be
intrinsically chaotic.

Further work is needed to extend the present theory
beyond the case of a single scalar particle.
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