
APEIRON Vol. 2, Nr. 2, April 1995 Page 27

Classical Quantum Theory
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78176 Blumberg, Germany

From the extensive observations and the ideas of Newton and from classical physical optics the ve-
locity of a quantum particle is given by w S= E , where S is the Poynting vector and E the wave
energy density. Integrating w = dr/dt yields the quantum particle motion along a discrete trajec-
tory as a function of time and initial conditions. All observables are thus precisely predicted. The
wave velocity equals the classical particle velocity, where the de Broglie wavelength and the Planck
frequency conditions are k p=  and ω = ⋅p v . For bound particle motion, the space part of
the wave function ψ ψr r, t T tb g b g b g=  satisfies the usual time-independent Schroedinger equation,
and so the usual eigenvalues are predicted. The reasons the traditional quantum theory is unable to
make precise valid predictions in general and the de Broglie-Bohm interpretation are discussed.

1. Why traditional quantum theory makes
no precise valid predictions in general

Apart from a few correct empirical formulas, the
traditional quantum theory is generally fundamentally
wrong (Wesley 1961, 1965, 1983a, 1984, 1988a, 1991,
1994, 1995). The trouble all started when Schroedinger
(1926) based his quantum theory on Hamilton’s (1834)
geometrical optics approximation instead of basing it on
exact physical optics, or classical wave theory. Following
extensive experimentation involving the interference and
diffraction of light, Newton (1730) concluded that pho-
tons were essentially point particles that move such as to
yield wave phenomena. Newton’s original idea can be
implemented with the mathematical apparatus of mod-
ern wave theory, or physical optics. The geometrical op-
tics approximation, being valid only for situations where
the wavelength may be neglected as small, cannot explain
interference and diffraction, where the wavelength plays a
vital role and cannot be neglected. However, Schroed-
inger did recognize the need for exact wave behavior to
obtain standing-wave eigenvalues for bound atomic sys-
tems, as provided by his time independent Schroedinger
equation. As a result, the traditional Schroedinger theory
is hopelessly inconsistent. Macroscopically, only the
geometrical optics approximation is supposed to be valid,
where the wavelength can play no role and observations
are supposed to be given by averages over many de Bro-
glie wavelengths, while submicroscopically exact wave
behavior is supposed to be true, where the admissible
wavelengths determine the desired eigenvalues.

Futile attempts have been made to try to reconcile
Schroedinger’s hopeless inconsistency. To fit the geo-
metrical optics approximation, Schroedinger (1926) pro-

posed a “wave packet” to represent a quantum particle as
a huge object smeared out over thousands of de Broglie
wavelengths, and so the individual component wave-
lengths could be neglected as small. No such “wave
packet” has, of course, ever been observed, as it is in
principle unobservable (Wesley 1961, 1983b, 1991, 1995).
Such a huge “wave packet cannot fit into a tiny submi-
croscopic atomic system; nor can it account for interfer-
ence and diffraction, in agreement with the limitations of
the geometrical optics approximation.

Schroedinger also employed the complex representa-
tion of a wave, exp i kx t− ωb g , with an irreplaceable

i = −1  which has a 2π  ambiguity in phase, as required
by the phase independent geometrical optics approxima-
tion. Born (1926) introduced the mystical notion that the
wave function represents an intrinsic “probability ampli-
tude”, such that the precise behavior of an individual
quantum particle cannot, even in principle, be either ob-
served or predicted! Heisenberg (1927) introduced the
“uncertainty principle”, which can be shown (Wesley
1995) to be merely a prescription of the limitation in ac-
curacy required that can make the geometrical optics ap-
proximation valid. It is traditionally claimed that observ-
ables are given by “expectation values” (Schiff 1949),
which are integral averages over all space that eliminate
detailed prediction, in agreement with the rough geo-
metrical optics approximation—but, of course, not in
agreement with actual detailed observations involving
interference and the wavelength.

To try to justify these futile attempts to resolve
Schroedinger’s original inconsistency, a huge amount of
further nonsense has been generated: collapsing wave
packets, the nonexistence of nonobserved states, thought
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experiments in lieu of actual experiments, self interfer-
ence of a single quantum particle, superposition of wave
amplitudes representing the superposition of physical
states, the operator approach, the Hilbert-space approach,
the von Neumann theorem, wave particle duality, the
complementary principle, the claimed violation of Bell’s
theorem (Wesley 1994), Schroedinger’s (1926) time de-
pendent equation with its ambiguous irreplaceable
i = −1 , etc., etc.

2. An adequate quantum theory must ex-
plain interference

As mentioned above, the Schroedinger (1926) quan-
tum theory, being based upon the geometrical optics ap-
proximation of Hamilton, cannot explain interference,
where the wavelength plays a vital role and cannot be
neglected.

Newton (1730) explained his observations of the in-
terference and diffraction of light in terms of the wave-
length (equal to two of Newton’s “fits”). He assumed
that photons moved such as to yield this wave behavior.
To account for all of Newton’s detailed observations, a
photon must be regarded as essentially a point particle.
The mathematical aspects of the wave behavior of light
were developed by Fresnel (1826), This field of study is
now called “physical optics”. Although the photon as-
pects of light were largely neglected or even denied in the
1800’s, it is now known that Newton was right: light
consists of a flux of photons that exhibit wave behavior.

An adequate quantum theory must yield the ex-
tremely successful results predicted by physical optics, or
classical wave theory, which can be derived from a pre-
scription for the precise behavior of photons, as well as
the precise behavior of phonons. Most of the empirical
data available that needs to be explained by an adequate
quantum theory is provided by the macroscopic observa-
tions of classical waves. The denumerable sets of eigen-
values provided by standing waves in bound submicro-
scopic atomic systems represent a relatively smaller
amount of empirical information. In order to fit all of the
empirical evidence available, both macroscopic and
atomic, the theory presented here is based directly upon
exact classical physical optics instead of the rough geo-
metrical optics approximation of the traditional Schroed-
inger theory.

3. The Wesley wave

An aspect of light unknown to Newton and Fresnel
and first discovered by Planck (1901) was its quantization
in energy units of

E h= =ν ω , (1)
where h is Planck’s constant, = h 2π , and ω πν= 2  is
the angular frequency. The propagation constant k is

then also quantized in momentum units given by
p = =Ec c c c2 2ω , or

p k= . (2)

de Broglie (1923, 1924) speculated that particles with a
nonzero rest mass should also exhibit wave behavior,
where the propagation constant (or wavelength
λ π= 2 k ) is also given by Eq. (2), the so-called de
Broglie wavelength condition. His conjecture was con-
firmed in the laboratory.

Since a classical wave is empirically defined by a flux
of quantum particles, the wave velocity u and the particle
velocity v must be identical for a free-space wave, or

u v k= =
ω
k2 . (3)

From Eq. (2) the angular frequency then becomes, in
general, for particles with zero or nonzero rest mass

ω = ⋅p
v

. (4)

This result (4) is seen to be the Planck frequency condi-
tion (1), where for photons v c=  and p c= E c2 . The
empirically correct free space wave for any quantum par-
ticle is then the Wesley (1962, 1965, 1983c) wave,

Ψ = ⋅
−L

NM
O
QPsin p

r vtb g
. (5)

For a slow particle with a nonzero rest mass, the fre-
quency from Eq. (5) or (4) is quantized in units of twice
the kinetic energy W; thus,

ω =
2W

, (6)

which may be contrasted with the traditional theory
where ω  is supposed to be either the total classical en-
ergy or, inconsistently, the total energy including the rest
energy mc2 . This empirically correct Wesley wave, Eq.
(5), may be compared (Wesley 1965, 1983d) with the
physically impossible traditional de Broglie (1923, 1924)
wave, where the frequency for a slow particle of nonzero
rest mass is supposed to be mc mc2 2γ ≈ , and the
phase velocity is then supposed to be u c v c= >2 .

4. Classical quantum particle trajectories

Since quantum particles must carry the energy and
momentum, and the classical Poynting vector P pre-
scribes the energy and momentum flux in a wave, quan-
tum particles must necessarily move along the lines of the
Poynting vector to yield wave phenomena. If the wave
energy density E is the energy of the quantum particles
that produce the wave, then the quantum particle veloc-
ity w is given by

w
S

=
E

, (7)

in agreement with Eq. (5) for a free quantum particle.
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A classical scalar wave function Ψ  satisfies the wave
equation

∇ − =2
2 2

2 0Ψ
Ψ∂ ∂ t
u

, (8)

where u is the phase velocity, subject to appropriate
boundary conditions. The classical Poynting vector and
energy density for a scalar wave are then given by

S = −
∇Ψ

=
∇Ψ

+
L
N
MM

O
Q
PP

K
t

E K
t

u

∂
∂

∂ ∂

Ψ

Ψb g b g2 2

22 2

, (9)

where the appropriate constant K depends upon the
amplitude constant chosen for Ψ. If E Pω =  is to
represent the quantum particle density and S Gω =
the quantum particle flux, then the constant K must be
chosen as

K
k

=
ω
2 . (10)

Light can be treated as a scalar wave. Polarization
phenomena can be handled with two such scalar waves
(Wesley 1983e). The scalar theory given by Eqs. (7), (8),
and (9) may thus be regarded as perfectly general and
valid for all quantum particles.

Once the solution Ψ  to the wave equation (8) is
known as a function of position and time, the motion of a
quantum particle along a discrete trajectory as a function
of time and the initial conditions are given by integrating
Eq. (7), where w r= d dt , thus,

r r w r0
0

b gm r b g, ,t t t
t

= z d . (11)

Once the precise quantum particle motion is known, all
possible observables can be calculated and precisely pre-
dicted. For example, the force acting on a slow quantum
particle of nonzero rest mass m that gives rise to the mo-
tion is given by

F
w

= m
t

d
d

, (12)

where the velocity w is given by Eqs. (7) and (9), ex-
pressed as a function of time, using Eq. (11). Similarly,
the potential that acts in a conservative situation is given
by the total energy minus the kinetic energy expressed as
a function of position only, using Eq. (11); thus,

U E
mw

= −
2

2
. (13)

5. Time-average classical quantum particle
trajectories

For light, the time variation is harmonic and rapid, a
period being of the order of 10 15− s; most macroscopic
observations of interest are time-average observations. In

this case it is of value to define a time-average quantum
particle velocity w  as

w
S

=
E

, (14)

where S  and E  are given by averaging Eqs. (9) over a
cycle. It may be readily shown that the instantaneous tra-
jectories given by Eq. (7) can differ from the time-average
approximation, Eq. (14), by at most a quarter wavelength,
which is a negligibly small deviation for macroscopic ob-
servations (Wesley 1983f).

A specific example is indicated in Fig. 1 for the classi-
cal time-average flux of coherent quantum particles
passing through Young’s double pinholes to produce the
famous double pinhole interference pattern (Wesley
1983g, 1984, 1991). This figure was obtained by display-
ing the slopes of the time-average Poynting vector S  on a
grid and sketching the trajectories in by eye so that the
quantum particles emanate isotropically from each pin-
hole.

It must be stressed that the approximation w , Eq.
(14), which is excellent for macroscopic time-average
quantum particle motion, is not at all sufficient for sub-
microscopic atomic systems, where neither the period
nor the wavelength can be regarded as small. It cannot be
used, for example, to describe the motion of the electron
in the hydrogen atom.

Figure 1. Time-average Poynting vector or trajectories of quantum
particles passing through two pinholes, the distance between pinholes
being 3.6 times the wavelength.
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6. Arbitrary flux and density of the tradi-
tional theory

In contrast to the present classical quantum theory,
which is based directly upon the classical empirical evi-
dence provided by Newton and classical physical optics,
the particle flux and density of the Schroedinger (1926)
theory is based upon theoretical speculation only. As a
consequence it is difficult to discover any empirical merit
for his arbitrary specification. In terms of his unfortunate
improper use of complex notation involving an irreplace-
able i = −1 , Schroedinger’s (1926) “relativistic”, particle
flux and density (where for photons and phonons
mc2 = ω ) are given by

′ = ∇Ψ −

′ = −
F
HG

I
KJ =

G c
i

P i
t t

2

2

2

ω

ω
∂

∂
∂
∂

Ψ Ψ∇Ψ

Ψ Ψ Ψ Ψ ΨΨ

* *

* *
*

,

,

d i
(15)

where the time variation is always prescribed by the time
harmonic factor exp −i tωb g , in which ω  is a constant.

Clearly Schroedinger’s arbitrary prescription (15)
cannot agree with the correct empirically observed instan-
taneous flux and density given by the classical expressions
(9) (for the appropriate choice of the constant K). The
traditional prescription (15) is not a function of the time;
it can, at best, only represent a steady state flow for time
harmonic waves averaged over a period.

Classically, only pure real wave functions are admis-
sible, and if complex notation is used, they must be re-
ducible to a pure real result. A pure real time harmonic
function f can be expressed as the real part of a complex
function Ψ = −ψ ωr i tb g b gexp ; thus,

f A r t B r t
r i t

= +
= −

=
+

b g b g
b g b g

cos sin
Re exp

*

ω ω
ψ ω

Ψ Ψ
2

. (16)

where Ψ r A r iB rb g b g b g= + . The time average of a prod-
uct of two real time harmonic functions f1  and f2  of the
same angular ‘frequency is then given by

f f1 2
1 2 1 2

4
=

+Ψ Ψ Ψ Ψ* *

. (17)

From Eqs. (16), (17), (9), and (10) the empirically correct
classical time-average quantum particle flux and density
in correct complex notation are given by

G = ∇Ψ −

=
∇Ψ∇Ψ

+

c
i

P
k

2

2

2

2 2

ω
Ψ Ψ∇Ψ

ΨΨ

* *

* *

,

,

d i
(18)

which may be compared with the arbitrary traditional
flux and density, Eq. (15). The Schroedinger flux ′G  is
seen to agree with the empirically observed classical time-
average flux G  for time harmonic waves. But the Schro-
edinger density ′P  does not agree with the observed

classical time-average density P , except for the trivial
case of a free particle, where Ψ = ⋅ −exp i tk r ωb gm r .

The fact that the Schroedinger flux happens to agree
with the correct classical time-average Poynting vector
for time harmonic waves does not mean the traditional
theory is thereby rescued, because: 1) The traditional
flux, ′G , the first of Eqs. (15), is supposed to be the in-
stantaneous flux, which does not agree with the correct
instantaneous flux given by the first of Eqs. (9) for real Ψ
functions. 2) Since the Schroedinger specification (15)
assumes only time harmonic waves; it cannot yield the
quantum particle flow for transient waves. In contrast,
the correct classical specification (9) yields particle flow
for transient waves, as well as for time harmonic waves.
3) The traditional specification (15) is assumed to be valid
for submicroscopic atomic systems, which led Schroed-
inger to make the impossible claim that bound systems
are devoid of any motion what-so-ever. 4) In the Schro-
edinger theory ′G , Eq. (15), is supposed to be exact
without any approximation being involved; but the time-
average of the correct classical flux G , Eq. (9) (that equals

′G ), for time harmonic waves is an approximation that
cannot agree with the exact instantaneous flux. 5) The
traditional Copenhagen interpretation claims that the
flow lines defined by Schroedinger’s flux, ′G  have no
physical meaning; because quantum particles are not
supposed to follow precise (or even approximate) trajec-
tories.

7. Bohm’s interpretation of the traditional
theory

Madelung (1926), de Broglie (1927) and Bohm (1952,
Bohm and Hiley 1993) tried to resolve Schroedinger’s
original inconsistency by proposing that quantum parti-
cles follow discrete trajectories given by integrating a par-
ticle velocity ′w  defined by

p w= ′ = − ∇m i ln Ψ , (19)

where Ψ  is the usual traditional complex wave function.
Since the particle velocity must be pure real, the complex
conjugate of the right side of Eq. (19) must yield the
same particle velocity. Hence, Eq. (19) can be written in
the symmetrical form

′ = ∇ −

= ⋅
∇Ψ −

w
2

2

im

im

ln ln *

* *

*

Ψ Ψ

Ψ Ψ∇Ψ
ΨΨ

d i
. (20)

Making the replacement mc2 = ω , Eq. (20) is seen to
be simply the particle velocity expected from Schroed-
inger’s flux and density, Eq. (15), for time harmonic so-
lutions. In particular,

′ =
′
′

w
G
P

. (21)
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Thus, the de Broglie-Bohm theory offers nothing new. It
merely says that Schroedinger’s arbitrary flow lines, ′G ,
should be taken seriously and should be accepted as ac-
tual quantum particle trajectories.

Although Eq. (19) or (21) yields the correct time-
average approximate trajectories for macroscopic obser-
vations for time harmonic waves; it does not give the
correct magnitude of the particle velocity along these tra-
jectories; because the correct particle density P , the sec-
ond of Eqs. (18), does not equal ′ =P ΨΨ * . Moreover,
the particle velocity as prescribed by Eq. (19) or (21) can-
not, contrary to Bohm’s claims, yield the correct trajecto-
ries, nor the correct velocities for submicroscopic atomic
systems where the time-average approximation is not
admissible. Like Schroedinger, Bohm must make the
impossible claim that bound atomic systems are neces-
sarily completely motionless.

The Bohm interpretation of the traditional quantum
theory, thus, merely serves to make Schroedinger’s origi-
nal inconsistency painfully obvious without, however,
resolving it. The present classical quantum theory ex-
hibits no such inconsistency.

8. Classical quantum theory for bound
systems

To satisfy boundary conditions, a standing wave solu-
tion Ψ r, tb g  to the wave equation (8) appropriate for
bound quantum particle motion must be separable as a
product of a function of position only Ψ rb g times a
function of the time only T(t); thus,

Ψ r r, t T tb g b g b g= ψ . (22)

Substituting Eq. (22) into (8) then yields two separated
equations

∇ + =2 2 0ψ ψk ,           
∂
∂

ω
2

2
2 0

T
t

T+ = , (23)

where the phase velocity squared is given by

u
k

2
2

2=
ω

. (24)

To solve these Eqs. (23), k2 must be expressed as a
function of position only and ω 2  must be expressed as a
function of time only. Since for classical macroscopic
observations a free-traveling wave travels with the quan-
tum particle and the phase velocity equals the particle
velocity, the phase velocity for bound particle motion
should also be taken as the classical particle velocity
(ignoring possible quantum wave effects). Because en-
ergy is conserved for bound particle motion, the phase
velocity squared that occurs in the wave equation can be
expressed in terms of the energy. For a slow particle of
nonzero rest mass, using the de Broglie wavelength
condition (2), the propagation constant squared k2 to be
used in the first of Eqs. (23) becomes

k
p

m
E V r2

2

2 22= =
− b g

, (25)

the kinetic energy being p m2 2 , and where E is the total
constant energy. Here, k2, Eq. (25), is seen to be ex-
pressed as a function of the position only, as desired.
Combining the first of Eqs. (23) and (25) yields the
fruitful time independent Schroedinger equation,

2 2 2 0∇ + − =ψ ψm E V rb gm r . (26)

From the Planck frequency condition (4), ω 2  to be
used in the second of Eqs. (23) becomes

ω 2
2 2

2

4
=

⋅
=

p vb g b gW t
, (27)

where the kinetic energy W is to be expressed as a func-
tion of the time only. The second of Eqs. (23) becomes

2

2
24 0

d
d

2T
t

W t T+ =b g . (28)

Consistent with the differential equation for the space
part, the Schroedinger equation (26), W(t) is to be taken
as the classical kinetic energy expressed as a function of
the time only.

For fast particles, where the momentum p and kinetic
energy W are given by

p v= mγ ,          W E V mc= − =* 2γ , (29)

where E* is the total constant energy including the rest
energy, the appropriate Eqs. (23) from (2) and (4) be-
come

2 2 2 2 2 4

2 2 2

2
2 2 4 2

0

c E V m c
W T

t
W m c T

∇ + − =

+ − =

ψ ψ ψ
∂

∂

* ,

,

d i
d i (30)

where W in the second of Eqs. (30) is to be expressed as a
function of the time only. The first of these Eqs. (30) is
Schroedinger’s “relativistic” wave equation.

To derive the motion for a bound quantum particle,
the classical problem, independent of possible quantum
wave effects, must first be solved. Second, the resulting
classical expressions for the kinetic energy W = E – V (or
else E* – V) expressed as a function of position and also as
a function of time only are then to be substituted into the
appropriate differential equations (26) and (28) (or else
Eqs. (30)). Third, after these differential equations are
solved, Ψ = ψ rb g b gT t  is substituted into Eqs. (9) and (7)
for the quantum particle velocity w, which includes both
classical and quantum effects. Fourth, Eq. (7) is inte-
grated to yield the desired quantum particle motion along
discrete trajectories as a function of time and initial con-
ditions.

The approximate time average velocity w , Eq. (14),
and the approximate trajectories obtained by integration,
which are appropriate for macroscopic observations of
time harmonic waves, cannot be used for bound particle
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motion, because the wavelength involved cannot be re-
garded as small.

In the traditional Schroedinger theory the variation
with time is assumed to be nonexistent for bound parti-
cles. The function T(t) must be assumed traditionally to
be a constant. This peculiar idea results from Schroed-
inger’s improper use of complex notation to try to repre-
sent pure real physical phenomena.

Some explicit examples of bound particle motion
prescribed by the present classical quantum theory may
be found elsewhere (Wesley 1983h, 1984, 1991).

9. Discussion

The classical quantum theory presented here is able
to successfully account for a vast amount of empirical
evidence that cannot be explained by the traditional
Schroedinger quantum theory. The classical quantum
theory readily reveals the precise motion of quantum
particles along discrete trajectories that yield interference
and transient wave phenomena. It indicates, in terms of
the initial positions of photons in the incident beam,
which photons are transmitted and which are reflected at
a dielectric interface (Wesley 1988), no intrinsic prob-
abilities being involved. The idea of inherent unpredict-
ability, which the traditional quantum theory needs to
excuse its inability to make precise valid predictions, is
not a feature of the precise classical quantum theory.

Despite the extreme superiority of the classical
quantum theory presented here, it seems to lack a truly
fundamental character. To a first approximation, the
classical motion without quantum wave effects is derived.
To a second approximation, quantum wave effects are
generated from the first approximation. It then appears
that quantum (or wave) behavior may be merely a super-
ficial effect superposed upon the classical motion. It
would seem that perhaps a third approximation might be
needed, or, of course, a truly fundamental theory.

The arrogant ideas of Heisenberg, Born, Dirac, Bohr,
and others that the Copenhagen quantum theory repre-
sents a new fundamental science or “quantum mechan-
ics” is hardly justified. The observation of quantum phe-
nomena is not new. The general ideas of how quantum
particles move to produce interference and diffraction
were already investigated by Newton 300 years ago.

The underlying cause of the wave behavior exhibited
by quantum particles remains obscure. The classical
quantum theory presented here is able to show how
quantum particles move to exhibit interference and wave
phenomena; but it does not say why quantum particles
should move in this fashion.
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