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Difiusionof SeismicEnergy in the NearRange
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Abstract. It is summed that the flow of seismic ene r y from an underground nuclear
explosion or earthquake in the near range (i.e., distances of l o - than 1000 k m ) may be esti‑
mated by the difiusion equation in cylindrical geometry with a difiusivity varying directly as
frequency. A term is included to allow for the dissipation of energy due to the anelasticity of
the earth. The mean period and amplitude of a seismogram are thereby derived as functions
of the time of arrival and range. The peak particle velocity is derived as a.function of range.
A preliminary comparison with observations of the seismic waves produced by an under‑
groundnuclear explosion indicates satisfactory over-all agreement.

INTRODUCTION
The present theory concerning the difiusion

of seismic energy is propowd in order to obtain
an over-all description of a seismogram in the
near range. An adequate over-all description of
a seismogram should prove useful for estimating
the probable peak particle motion to be ex‑
pected in the neighborhood of an underground
nuclear explosion. Such a description might also
yield some insight into the general mechanisms
of seismic wave propagation.
For the near range (i.e., distances of less than

1000 km) the seismograms are quite difierent
from those for greater ranges [cf., Carpenter,
1965; Romney, 1959]. In the near range, P, S,
and surface waves of short periods are super‑
imposed to yield extremely complicated seismo‑
grams. Farther out from the source the seismo‑
grams become simpler; the dominant period
becomes longer and the various propagation
modes beeome separated in time.
An extensive literature exists today covering

various aspects of seismic waves [cf.,Miklowitz,
1960]; much theoretical work has been done on
the propagation of elastic waves in layered
mediums [e.g., Cagniard, 1962; Brekhovskikh,
1960; Ewing et 01., 1957]; and a considerable
amount of detailed informationhasbeen amassed
under the heading of ccismology [eg., references
in Batten, 1963]; but there appear to be no
formulas in the literature which properly de‑
scribe the grom over-all characteristics of a
seismogram in the near range. In particular,
there appear to be no simple formulas that
properly give the variation of the mean period

and amplitude as functions of time of arrival
and range (discrete arrivals and changes of
phase being ignored).

Tama r
In the near range the dominant periods are

suficiantly short for elastic waves to respond to
numerous inhomogeneities in the earth. The
propagation of elastic waves thus takes on the
character of diffusion. At larger ranges (greater
than about 1000 km) where the dominant pe‑
riods become large and the elastic waves no
longer respond to many inhomogeneities, the
propagation of elastic waves in the earth may
no longer becharacterizedby adifiusion process.
Diflusion equation. As is well known, the

shape of an elastic pulse is propagated without
change in an ideal infinite, homogeneous, non‑
dispersive, elastic medium. In the heterogeneous
earth, however, a single pulse produced by an
underground nuclear explosion is rapidly con‑
verted into along train of pulses and transients
with a.resulting apparent periodicity. The gross
features of the seismogram may be attributed
to numerous reflections and refractions. Each
reflection and refraction at an interface gives
rise to new compremional and shear waves (and
possibly surface modes) which travel at difl‘er‑
ent velocities. The number of possible new ray
paths created at each interface is in general
four: refracted compressional, refracted shear,
reflected compressional, and reflected shear. The
number of podble ray paths in the heterogene‑
ous earth rapidly becomes quite large, and the
over-all description of the phenomenon ap‑
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preaches that of a difiusion procem. It is thus
postulated that the seismic energy density E is
specified approximately by the difiusion equa‑
tion [1008,1934],

aE/az ‐ kV’E = o (1)
where t is the time andk is the difl'usivity.
Diffusivity as a function a! frequency. The

preciseway in which It varieswith the frequ-cy
is an extremely difficult theoretical question
(of. difiusion procemes discussed in Morse and
Feahbach [1953]). To fulfill the primary object
of the present work, which is to develop a for‑
mula that fits the over-all observations, it is
found that It should be chosen to vary directly
with frequency:

7:'- R.’w/4 (2)
where u) is the angular frequency and R. is a
parameter with the dimensions of length (which
may be compared with a scattering length or
mean free path). A proper theoretical justifica‑
tion for this choice based upon first principles
cannot be given at this time.
Cylindrical geometry. Since the velocity of

seismic waves near the earth’s surface generally
increases with depth, seismic waves initially
proceeding in a downward direction will tend to
be refracted back toward the surface. The en‑
ergy of the seismic waves appears to be largely
confined to the outermost layers of the earth.
For the near range being considered here the
curvature of the earth may be ignored and the
diffusion equation (1) may, thus, be appropri‑
ately solved in cylindrical coordinates.
Energy dissipation due to the anelasticity of

the earth. Except at high frequencies where
Rayleigh scattering may take place in a granu‑
lar medium [e.g., Knopofl and Porter, 1963;
Marea and McSkimm, 1947] or in metals where
heat conduction produces a nonadiabatic loss
[Zener, 1948], real solids generally do not be‑
have in a viscoelastic manner. Neither a Voigt
solid nor a Maxwell solid or, in fact, any com‑
bination of the two fits the empirical facts
[Kolsky, 1953]. In a real solid at low frequen‑
cies a hysteresis loop is trawd out, the area of
which is independent of the frequency (Love,
1927; Ganant and Jackson, 1937; Wood and
Walther, 1935; Taylor, 1946; Kolsky, 1958;
Davids, 1960]. This means that the fractional
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energy lost per unit time is proportional to the
frequency. For a particular wave mode (such
as S or P) the energy decreases with the resi‑
dence time of the wave in the mediumaccording
to

exp (-w¢/Q) (3)
where the parameter Q is the usual dimension‑
less constant defined to characterise themedium
[cf.AndersonandArchambeau, 1964].
For the heterogeneous earth the energy loss

for a wave following a particular ray path be‑
comes exp ( ‐uE.t . /Q.) , where 3'refers to dif‑
ferent portions of the path and the total time
of rmidence is t = am. An average value (0)“
may bedefinedby

(0)" = (E «255/: t. (4)
Expression 3 may be regarded as valid for the
heterogeneous earth if Q“ is interpreted as an
average value in the sense of (4). This average
may be amumed to be taken over all modes of
propagationaswell asall ray paths.
The diffusion equation (1) may now bemodi‑

fied to include this energy dissipation due to
the anelasticity of the earth. From (1), (2), and
(3) the appropriate difierential equation be
comes

aE/a(a:t) = (R.'/4)V'E ‐ E/Q (5)
It may be noted that, although the loss due to
anelasticity is empirically correct, it has never
been justified by a proper theoretical analysis
based uponfirst principles.
Solution of difi'usion equation with source.

Because cylindrical geometry is assumed for a
plane earth and difiusion takes place parallel to
the plane boundary, the solution of (5) may be
chosen as that for an unbmmded medium. It
may be ammed that the energy from an under‑
ground nuclear explosion or earthquake is in‑
jected into the earth as a 8 function in time.
The source may be approximated by a line
source for points of obmrvation suficiently far
removed. Introducing a 8 function line source
into (5) yields the appropriate difiusion equa‑
tionwith source included:

dE/BQM) = (R_’/4)v'1r ‐ E/Q
- rR.’BG(¢)6(R) (6)

where R is the radial distance from the site of
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the explosion or earthquake, B is a constant
specifying the strength of the source, and the
time of the explosion or earthquake is t = 0.The
appropriate solution to (6) [Horse and Fash‑
bach, 1953] is

E - B i " exp (‐R’/R.'wt - est/Q) (7)
where B may be a function of the frequency.
This result specifies the energy density per

unit fmquency interval. To obtain the total en‑
ergy density E... by summing over all frequen‑
cies it is only necessary to integrate (7); thus

E... =if...3(0))
R, at)

a finite range of frequencies being amumed. The
energy, not the particle velocity (or seismic
wave amplitude), is summed over all frequencies
because the individual waves of various fre‑
quencies are assumed to arrive at the point of
observation with random phases. As is well
known, the net intensity or energy flux of waves
added together fromsourceswith randomphases
is just the sum of the intensities produced by
each of the sources individually.
Source junction 3(a). To specify the func‑

tion 3(a)) we must know the nature of the
original source. If the original source is approxi‑
mated by a particle displacement that becomes
established stepwise in time (as is frequently
assumed, eg., Cagniard [1962]), the Fourier
transform of the particle displacement varies as
m“ and the transform of the particle velocity is
a constant independent of so. If the original
source is approximated by a particle displace‑
ment that becomes established as a 8 function
in time (as assumed to derive the Green’s func‑
tion for the displacement field [Morse, 1958]),
the Fourier transform of the particle displace‑
ment is a constant and the transform of the ve‑
locity varies as0.
Since the energy density per unit frequency

interval E varies as the square of the velocity
transform, B in (7) is a constant for a step
frmction source and varies aso' for the 8 func‑
tion source. It was formd that the 8 function
source not only yields a better fit with the ob‑
served data but appears to yield a more physi‑
cally satisfactory solution in general. In par‑
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tieular,astepfunctionsourcefailstogive
meaningful results when the shear modulus is
allowed to goto new, even for pure P waves. It
is thus assumed that B may be approximated
by

B = Bow” (9)
Pefiodmofimcfionoffimcmdrme. The

apparent or dominant. frequency of a seismo‑
gram should correspond to the frequency of the
maximum seismic energy density. Substituting
(9) into (7), difierentiating with respect to o,
and setting the result equal to zero, we find the
apparent period to be a linear function of the
time of arrival t:

T = St (10)
(see Figure2) where the slope Sis a function of
the rangeR,

S= (2rR-’/R')[(R'/R-’Q+ I ) ” - 1] (11)
This slope decreaseswith increasing range.
Representation of a sinusoidal wave with a

psfiodproportionaltothetime. Asimplepe‑
riodic expresion such as in (21rt/T) ceases to
bea periodic frmction‐or, indeed, any function
of thet imeatal l ‐ i fT,asgivenby (10) is
substitutedMy into such anexpression. The
sinusoidal representation of a wave whose pe‑
riod is governed by (10) must be represented
by some more general expression, sin M t ) . For
this expression to be a proper single-valued
periodic function of the time t, the phase ¢( t )
should be a monotonically increasing function
ofthetime.Iftheperiodofthewaveisonlya
slowly increasing function of the time, the slope
of d asa frmction of t should beproportional to
21r/T. From (10) this means that «is should
satisfy

tit/d! = (2W3)!-l (12)
Integrating (12)View

¢ = (21/8) 1110/1») (13)
where t. is a constant of integration. The sinus‑
oidal representation of a wave whose period is
proportional to the time, according to (10),
then becomes

sin [Or/S) 1n(1/10)] (14)
Particle velocity amplitude as a function of
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time of arrival. Because (14) represents the
sinusoidal variation of the seismic wave of maxi‑
mum energy density, the dominant frequency
asa function of t andR is given by

w‘ = (Zr/St) In Win) (15)
If this value of mis chosen as a mean value with
which to evaluate the integral in (8), according
to the mean value theorem for integrals, the
total energy density summed over all frequen‑
cies may be approximated by

Etot = on(‘°.) (16)
Because the total seismic energy density varies
as the square of the particle velocity, the ve‑
locity amplitude A is proportional to the square
root of Em,or
A. = Aow*l-Uz

-exp (‐R2/2R.'w’t - w‘t/ZQ)
where A, is a constant.

To facilitate comparison with observation it
is convenient to introduce a numerical range p
andthe logarithmic time1'such that

(17)

p = 13/01/23. 1'= 111(1/t.) (18)
From (11) the slope Smay bewritten

8 = (%/Q)[(p’ + 1)"’ + 1 ] " (19)
and (17) becomes

A =  C e x p l l n r ‐5 - r / 2
- Hon2 + . 1 ) " " - 1](r + r " ) ! (20)

(see Figure 3) where C is a function of the
range:

0 = Auto‐“QMa + 1)"2 + 1] (21)
For the time t = t., 'r = O,and according to

(20) A = 0; thus the parameter t. is the initial
arrival time, zero time being the time of the
undergroundnuclear explosion or earthquake. ,

Theoretical seismogrmn. According to the
present theory the seismogram representing
mean particle velocity u may be synthesized by
multiplying (20) and (14); thus

0 = A Bin [Ch/S) h (1/to)l (22)
(see Figure 1), where the random variations in
amplitude and phase which occur in actual
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2.0 22 2A 2.6 2..
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Fig. 1. Theoretical seismogram of the particle
velocity (22) which duplicates the observed varia‑
tion of average amplitude and period with time of
arrival. Random variations of amplitude and
phase such as occur in an actual seismogram are
absent.

seismograms are not represented. This synthesis
of the seismogram (22) is valid only under the
assumption that the amplitude and the phase
remain essentially constant over a single cycle,
in order that the square of (22) averaged over
a cycle should be proportional to the energy
density (i.e., the amplitude squared). The aver‑
age amplitude and phase of actual seismograms
(as indicated by the theoretical curve in Figure
1) remain essentially constant over a single
cycle, so that the synthesis (22) is quite ade‑
quate.

According to the present over-all view, it may
be assumed that the heterogeneous earth parti‑
tions the energy equally among the three inde‑
pendent modes of particle motion along three
mutually perpendicular axes. Consequently, (22)
may also be used to represent the over-all verti‑
cal, transverse, or radial components of the
particle velocity, the amplitude being smaller by
the factor 3 ‘ “ .

Peak particle velocity as a function of range.
Difierentiating the velocity amplitude (20)
withrespecttOrandsettingtheresultequalto
zero yields the value of r for which A is a maxi‑
mum; thus

1. = [4+ (p' + 1)" ' ] "
’ { l + [P2 _ 2 + 3(1)! + ”1/211!!! (23)

Themitialarfivaltimehmaybeassumedtobe
a linear function of the range:

‘0 = We (24)
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where c is the velocity of this first arrival.
Therefore, from (18) and (21),Cbecomes

0 = c ' p ‘ p r ’ + I ) “ + I ] (25)
where the new constant C” is not a function of
the range,

0, = Aoca/qu/GRfi‐fifa (26)

Substituting r... for r and (25) for C into (20)
yields the peak particle velocity:

9, = 0’ exp {-(3/2) 1nn
+ 111[(02 +1 ) " : + 1 ] + 1n7. - 57.,/2
‐ He“ + 1)”2 ‐ 11(7. + 1 . “ ) ! (27)
(see Figure4).
It may be noted that 1'... is not a widely vary‑

ing function of p, since for 0 S p < co, 2/5 S
1'... g 1; so that the variation of the peak par‑
ticle velocity with numerical range is not par‑
ticularly sensitive to the values of 1 . . For the
extreme cases of p ‐) 0 and p ‐> no it is found
from (27) that

' 3 ” for p ‐ » 0”" z ” (28)
o,mEma" for p‐) no

where the numerical range 9 isdefinedby (18).

COMPARISON W I T H OBSERVATION
To compare theory with observation the seis‑

mic waves produced by the underground nuclear
explosion Klickitat, exploded at 15 hours 30
minutesand 0.1seconds onFebruary20, 1964,at
the Nevada test site (37°9’3.00”N, 116°2’24.00”
W) in tufl (yield classified) were observed at
eight separate stations. Measurements were
taken by the Coast and Geodetic Survey along
an approximate line west from the epicenter at
six stations designated B ‐ l through B‐6 at the
distances indicated in Table 1. United Electro‑
dynamics, Inc., provided seismograms recorded
at two stations, KN ‐UT (Kanab, Utah) and
DR‐CO (Durango, Colorado), at the distances
indicated in Table 1. At stations B‐1 and B‐2
the signals were observed with standard strong‑
motion instruments, Coast Survey accelerom‑
eters (accurate for frequ-cies less than 5 cps)
and Carder displacement meters (accurate for
frequencies greater than 0.5 cps). At stations
B‐3 through B‐6 National Geophysical Com‑
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TABLE 1. ObmrvedSlope of Periodasa Function

of Arrival Time

Range R, Slope 8,
Station km X 1 0 "

13‐1 14.52 26.3
3 ‐2 24.59 16.1
3 ‐3 43.31 13.9
3-4 69.59 9.70
3 ‐5 92.79 13.40
B ‐6 105.5 9.68

KN‐UT 286.0 5.23
DR‐OO 731.7 4.93

pany’s NC‐21 velocity meters were used which
are linear from 1 to about 50 cps. At KN-UT
and DR‐CO portable Beniofi horizontal seis‑
mometers (displacement meters),Geotechmodel
6102A at DR‐CO and model 1101 at KN-UT,
whose responses are not flat at any frequency,
were used. Readings from B ‐1 through B‐6
were frequency corrected below 1 cps. Readings
from KN‐UT and DR‐CO were frequency cor‑
rected at all frequencies. The records at B ‐ l
through B‐6 were recorded on moving photo‑
graphic paper. The records from KN ‐UT and
DR‐CO were recorded on magnetic tape and
later plotted onpaper for visual inspection.
According to the present theory the three

vector components of the particle velocity
should be equivalent because of the equiparti‑
tion of energy in the heterogeneous earth; con‑
sequently, only the radial component (particle
motion toward and away from the source) was
chosen for study.
Observed period as a function of the time of

arrival. An average frequency for a particular
time was estimated at stations B‐1and B‐2 by
counting the number of maximums, minimums,
and zeros per unit time on the seismogram for
the radial displacement, adding the number of
intemections per unit time with the zero axis on
the seismogram of the radial acceleration, and
dividing the total by 6. At stations B-3 through
13‐6 the average frequency was estimated by
counting the maximums, minimums, and zeros
per unit time on the seismogram of the radial
velocity, adding the number of intersections
with the zero axis on the seismogram of the
radial displacement (obtained from the velocity
record by integration on an electronic analog
computer), and dividing the total by 6. At sta‑
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tions KN ‐UT and DR‐CO the frequency was
estimated by counting the number of maxi‑
mums and minimums per unit time on the seis‑
mogram of the radial displacement and dividing
by 2. The time intervals over which the counts
were taken (and thus the frequencies averaged)
were taken sufficiently large to include at least
three complete cycles. This necessitated an in‑
crease in the time interval chosen from 1 second
at the beginning of the records to 5 seconds
after about 50seconds.
The observed results are presented in Figure

2 as a scatter diagram of the period as a func‑
tion of the time of arrival. The straight lines are
least-squares fits. The observed slopes are pre‑
sented in Table 1.
The values of the two constants (appearing in

(11)) R... and Q which characterize the earth
were computed from the eight observed slopes
as shown in Table 1 by taking a least-squares
fit (weighting the value of each slope according
to the number of data points that were available
to determine the slope) of the straight line
S'R' plotted as a function of S. According to
(11) the slope of this straight line should be
-‐41rR..' and the SR' intercept should be ar/Q.
In this way it was found that
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R. = 6.4 :h 1.3 km
Q = 185 : l : 75

The probable errors indicated in (29) are per‑
haps larger than need be indicated, since these
same values of R. and Q give good agreement
with other types of independent observations as
indicated in the following sections.
The failure of some of the curves in Figure 2

to pass through the origin remains unexplained.
Observed amplitude as a function of time of

arrival. The amplitude of the radial velocity
was estimated as one-half the maximum minus
one-half the minimum in each of the time in‑
tervals for which the average frequency was
estimated (an interval involving at least three
complete cycles). For stations B ‐1and 3‐2 the
amplitude of the particle velocity A was esti‑
mated from the amplitude of the acceleration
A. and the amplitude of the displacement A. by
letting A = “ A . + AJm, where or. is the ob‑
served angular frequency in the time interval on
the acceleration seismogram (taken as2n times
the number of intersections with the zero axis
per unit time) andon; is the corresponding angu‑
lar frequency for the displacement. The scis‑
mograms from stations B ‐1 and B‐2 were only

(29)

|.5

_ “"411! j . I l

1. Arrival T i l l . (soc)

Fig. 2. Variation of period of the radial particle velocity with time of arrival. The straight
lines,asrequiredby (10),have been fittedby least squares.
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30 seconds long and were, consequently, of
limited value. At stations KN ‐UT and DR‐CO
the velocity amplitude was estimated from the
displacement amplitude by lettingA = «uh.
The observed values of the amplitude A as

functions of the time of arrival are shown on
logarithmic scales in Figure 3. The theoretical
curves shown in Figure 3 were obtained from
(20) with the numerical range p computed from
QmR. = 87 km (according to (29) an error
of i 35 km may be associated with this value).
The parameters to and C were chosen for each
individual curve in order to obtain the best fit.
A change in t. means a back-and-forth transla‑
tion of the curve on the logarithmic scale, while
a change in 0 means an up-and-down transla‑
tion, the shape of the curves remaining fixed.
Observed peak particle velocity as a function

of range. The observed peak radial particle
velocity v, is shown in Figure 4. The theoretical
curve was obtained from (27) by using the
same value of OMB. = 87 km to compute p as
before. The value of C" was chosen to obtain
the best fit.

0 0 5

0 0 ‘1|
l 5 ” 5 0 0 0 D

I , Tune 0 ' A rhvo l leecl

Fig. 3. Variation of amplitude of radial parti‑
cle velocity with time of arrival, showing the
theoretical curves (20).

IO

l 0 ‑

-' l I
I0 I00

R, Range (km)
Fig. 4. Variation of peak radial particle velocity
with range, showing the theoretical curve (27).

IOOO

CONCLUSIONS
The theoretical assumption that the flow of

seismic energy may be predicted by the difl'usion
equation with a difiusivity proportional to the
frequency yields satisfactory over-all agreement
with observation as indicated by Figures 1
through 4.
The linear relationship (10) between the pe‑

riod and the time of arrival as predicted by
theory agrees with observation as shown in
Figure2. The decrease in the slope (11) of these
straight lines with range is also in accord with
observation (seeTable l ) .
The variation of the particle velocity ampli‑

tude (20) with the time of arrival agrees ade‑
quately with observations as shown in Figure 3.
The best fit is for later times when the number
of ray paths becomes large and the difiusion
picture becomes more accurate. Since R. =
6.4kmmaybeviewedasascatteringlength,it
would appear that the difiusion approximation
may fail for ranges of this order of magnitude.
Better agreement between theory and observa‑
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tion would probably be obtained if the rms
value of the magnitude of the vector velocity
were used for the amplitude instead of the peak
velocity spread in each time interval for just
the radial component.
The variation of the peak particle velocity

with range aspredicted by theory (27) appears
to fit the data (see Figure 4) fairly well con‑
sidering the scatter of the observed data points.
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