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The electrodynamics that predicts all known relevant obser-
vations is based upon the force F = (qq'R/R’)[l - 2v.v'/c? +
3(v+R)(v" R)/c’R* + (a - a')-R/c’] on charge q at r with the
absolute velocity v and acceleration a due to charge q' at
r' with absolute velocity v' and acceleration a', where R =
r - r'. This force yields Ampere's original empirical law
for the force between current elements, which predicts the
many effects due to Ampere tension between colinear current
elements. It yields Faraday induction as well as Miller's
localized unipolar induction. The force on an accelerating
charge due to a stationary charge yields Lenz's law for the
induced back emf; and, when applied to gravitation, qq'
being replaced by -~ Gmm', it yields the inertial force ma,
confirming Mach's priniciple. For <charge velocities
approaching the velocity of 1light c¢ it predicts the
results of the Kaufmann-Bucherer experiments and the
Bertozzi experiment, assuming neomechanics, or mass change
with velocity. It is readily written as a field theory.
Introducing time retardation, it yields waves and radiation.
It predicts the observed zero self-torque on the Pappas-
Vaughan Z-shaped antenna. Energy is conserved. The Weber
electrodynamic theory is shown to fail.

Key words: electrodynamics, forces, empirical tests, fields,
Weber.
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1. INTRODUCTION

The force

(1)
¢’F = (QQ'R/R’)LC’ - 2vev' + 3(v-R)(v"*R)/R? + (a - a')-R]

on charge q at r with absolute velocity v and acceleration a
due to charge q' at r' with absolute velocity v' and
acceleration a', where R = r - r', was originally proposed
by Wesley [1—4] as an approximation of the Weber [5,6] force

C’Fw = (qq'R/R’)[c’ +V® - 3(V-R/R)*/2 + A-R], (2)

where V = v - v' and 4= a - a' are the relative velocity
and acceleration. The velocity squared terms, involving
v’, (v*R/R)?, v'?, and (v'-R/R)’ were omitted as yielding
negligible forces that have never been observed. Without
these velocity squared terms the resulting force, Eq.(1),
could be written as an electrodynamic field theory.

However, the Weber force fails for charge velocities
approaching the velocity of light, as discussed in the
following Section; while the proposed force, Eq.(l), does
not fail for charge velocities approaching c, It is now
seen that the proposed force, Eq.(l), is the empirically
correct force; while the Weber force, Eq.(2), is merely
an approximation of Eq.(l) valid for small velocities.

The electrodynamics based upon the proposed force
satisfies all the known relevant empirical evidence. The
extensive evidence has been collected together and presented
elsewhere [1-4]. To conserve space it must be assumed that
the reader is already familiar with this evidence. It has
been shown [1-4] that the Maxwell theory, having only a
limited range of validity, fails empirically in general;
so it is not considered here. Although the failure of other
proposed electrodynamic theories to fit all of the empirical
evidence can be readily demonstrated; a review of these
theories is primarily of historical interest and cannot
be undertaken here,

2. FAILURE OF THE WEBER THEORY
Weber proceeded from Ampere's [7] original empirical

law for the force on current element ids due to current
element ids'

¢’dF = (1i'R/R’)[ - 2ds-ds' + 3(ds-R)(ds"R)/R’].  (3)
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By assuming steady currents are formed by charges flowing
with a constant velocity he could make the replacements
ids = qv and i'ds' = q'v'. In order to make the force
dependent upon the relative velocity he introduced the
velocity squared terms v’, (v*R/R)?, v'’, and (v'*R/R)’.
These velocity squared terms drop out when considering the
force betwen two current carrying conductors, where four
forces between stationary ions and moving electrons are
involved; so Ampere's law is recovered exactly using Eq.(2)
for steady currents.

Including the Coulomb force, Weber postulated the
force between steadily moving charges as

c¢’F, = (aq'R/R*)[c* + V* - 3(V-R/R)*/2]. (4)

Unfortunately, Weber had no empirical justification for
introducing both the velocity squared terms as well as
the Coulomb force; because his force, Eq.(4), predicted
a force on a stationary charge q due to a charge q' moving
with the constant velocity v' given by

¢’F_ = (aa'R/R>)[v'* - 3(v'*R/R)*/2]; (5)

and this force had never been observed. Attempts to observe
this very minute force for small charge velocities have
failed (eg., Edwards et al [8] and Curé [9]).

When the charge velocity approaches c, the velocity
squared terms in Egqs.(2), (4), and (5) are no longer
negligible. For the Kaufmann 10] ~ Bucherer [11] experi-
ments, involving fast electrons, Bush [12] and others [13,
14] have shown that the Weber theory predicts the observed
results if neomechanics, or mass change with velocity, is
neglected. But the Weber theory fails if neomechanics is
assumed. The Bertozzi [15] experiment involves the determin-
ation of the time of flight velocity of electrons after
being accelerated through a known potential. Velocities
approaching ¢ were observed. The Weber theory fails
drastically when neomechanics is neglected and fails slight~
ly when mass change with velocity is assumed [16]. Thus
for charge velocities approaching c the Weber theory cannot
predict simultaneously both the Kaufmann-Bucherer experi-
ments and the Bertozzi experiment when assuming or not
assuming neomechanics, or mass change with velocity. The
Weber theory fails!

The failure of the Weber theory for large charge
velocities may also be noted from the force, Eq.(4), for
charges receding or approaching each other at constant high
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velocities, The force goes to zero for V = -+/2¢c, and a
change in sign occurs for greater relative velocities. This
nonphysical behavior was originally noted by Helmholtz [17].
Since it is now known that charges can approach the velocity
of light c¢; the limit relative velocity should be 2c (such
as can be actually found in a super collider) and not ~/Zc.
It may be noted that the force proposed here, Eq.(l), goes
to zero for charges with constant absolute velocities c¢
receding or approaching each other; so the limit relative
velocity is V = 2¢, as is required physically.

3. THE WEBER POTENTIAL AND PROPOSED VARIATIONS

Weber noted that his proposed force, Eq.(4) could
be derived from a potential

U= (qa'/R)[1 - (V-R/cR)*/2], (6)

where dU/dt = - V-F,, if a relative acceleration term were
included, the last term in the square brackets on the right
of Eq.(2). Thus, Weber was finally led to propose his
potential, Eq.(6), and the consequent force, Eq.(2). The
acceleration term is empirically correct. The predicted
force on a stationary charge q due to an accelerating
charge q', (qq'R/R’)( -a'-R/c?), accounts for Faraday
induction.

Because the Weber force, Eq.(2), is derived from such
a simple potential, Eq.(6), and the Weber force is so
extremely successful in predicting effects produced by
slowly moving charges; the Weber potential has been regarded
with exaggerated respect., It is often regarded as represen-
ting the fundamental physical basis of Weber electrody-
namics. It is sometimes even assumed that the Weber potential
is necessary to conserve energy.

Variations of the Weber potential have been proposed
from time to time. Phipps [18] proposed the potential

U, = (qa'/R)y/ 1 - (V-R/cR)?, )

which reduces to the Weber potential, Eq.(6), for small
relative velocities. This Phipps potential is limited to
relative velocities V $ c¢; while the original Weber poten-
tial is limited to relative velocities V = -1/76; and
physically relative velocities should be limited to V g 2c.
Wesley [19] speculated that the Phipps potential might arise
as a root-mean-square average of retarded and advanced
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actions.

To recover the physically appropriate limit velocities
of vsec, v'sc and Vs 2c Wesley [20] proposed an
appropriate potential that reduces to the Weber potential
for small velocities. Unfortunately, the force derived
from this potential behaves in precisely the same fashion
as the original Weber force for charge velocities approach-
ing c; so this potential also fails for charge velocities
approaching c.

Variations of the Weber potential have been proposed b
Assis [21], Gerber [22], Schroedinger [23], Tisserand [24
and others for gravitation, where qq' is replaced by - Gmm',

This preoccupation with the Weber potential is not
justified: First, the potential itself is never observed
nor measured. It is merely a theoretical device that
provides no more empirical information than the derived
force. Second, the Weber potential is wrong; as it yields a
force that does not agree with all of the experimental
results for charge velocities approaching c. Third, such a
potential is not necessary to conserve energy. Any force
between two bodies obeying Newton's third law conserves
energy. The total external force on the system of two bodies
is zero, F(external) = F + F' = 0; since, according to
Newton's third law, the force on the primed body F' equals
the negative of the force on the unprimed body, F' = - F.
The external force, being zero, no external work is done on
the system or by the system. Its energy remains constant or
is conserved.

4, THE TWO BODY PROBLEM ASSUMING NEOMECHANICS

It is of interest to consider the two body problem
assuming neomechnics and absolute space-time, as required by
the present theory.

It may be seen from Eq.(1) that the proposed force
obeys Newton's third law. It acts along the line joining
the two charges, R. Interchanging primes and unprimes, where
R=r-r'"=-R'"=- (r' - r), it is seen that

F(q.r,v,a;q',r',v',a") = - F(q',r'",v',a";q,r,v,a); (8)

and the force on charge q' due to charge q is equal in
magnitude and oppositely directed to the force on charge
q due to q'. Thus, energy is conserved for the two charges.
For a particle of mass m and charge q and a particle
of mass m' and charge q' Newton's second law from Eq.(l)
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using neomechanics becomes

d(my v)/dt = F = RQ, d(m'y'v')/dt = - RQ, (9)

where Q is defined by the force apart from the R dependence,
Q = R*F/R?, and where

y = 1/+/1 - v?/c? and y'=1/4/1 = v'"/c* . (10)
Adding Egqs.(9) yields immediately an integral of the motion,
myv+m'y'v' = Moyo Vo (11)

where M, YoV, is the total linear momentum, a constant
of integration. This result (11) indicates the conservation
of linear momentum. Assuming that the constant total linear

momentum implies a constant linear velocity V,, then the
position of the center of mass R, becomes

Ro(t) = Ro(0) + Vot, (12)
where R,(0) is a constant of the motion.
Considering the total angular momentum with respect to
the arbitrary origin from which r and r' are measured,

Lt=rxmyv+r'xm'y'v', (13)

it may be seen that

st/dt =rxdmyv)/dt + r'xd(m"y'v")/dt. (14)
From Eqs.(9), where R=r - r', (15)
rxd(my v)/dt = - rxr'Q, r'xd(m'y'v')/dt = rxr'Q.

Adding these two Egs.(15), it is seen that dLy/dt = O;
so L., the total angular momentum, Eq.(13), is a constant
of the motion,

Introducing center of mass coordinates, the individual
particle positions are given by (16)

r =R, + m'y'R/(my + m'y'"), r' = R, - myR/(my + m"y'),
Substituting Eqs.(16) into Eq.(13) and using Eq.(11) yields

Lt = Ro XMQYQVQ + URX V, (17)
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where py is the reduced mass defined by
p=mm'y'/(my + m'y'). (18)

Substituting Eq.(12) into the first term on the right of
Eq.(17), it is seen to be a constant of the motion, the
angular momentum of the center of mass system about the
original origin, defined by

Lo = Ro(o) X MoYoVo. (19)

The angular momentum L about the center of mass is then
also a constant of the motion given by

L= AlR% Y = Tg = Las (20)

The problem has now been reduced to the mathematical
problem of a pseudo particle of reduced mass y moving in a
plane perpendicular to L, Eq.(20). Two variables, the radial
distance R and the angle ¢, can then specify the position of
this pseudo particle. In these coordinates Eq.(20) may
be written as

UR*® = L. (21)

Three scalar constants of the motion remain to be found.
Two of these may be regarded as the initial position, R(0)
and ¢$(0), which leaves only one remaining integral of the
motion of interest to be determined. This remaining integral
involves the details of the particular problem involved.

Newton's second law, Eqs.(9), may be written in terms
of R and ¢ using the integrals of the motion already
obtained, Egs.(11), (12), (19), and (21). The resulting
differential equation may then be integrated in principle
to obtain R = R(t) and ¢ = ¢(t); although this is complica-
ted by the fact that u, Y, and Y' are functions of the
absolute velocities v and v'. The remaining constant of
integration, thus obtained, together with the other 35
constants of the motion then means that the problem is
solved. Since the total energy E is known to be conserved;
it may always be expressed as a function of the known
constants of the motion.

It is important to note that neomechanics does not
permit in general the total energy E to be separated as a
simple sum of kinetic plus potential energy, as is usually
the case in Newtonian mechanics. In particular, taking the
scalar product of Eq.(9) with v and with v' and adding
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d(c’my + ¢’m'y')/dt = V*RQ, (22)

where Q = R-F/R* is the force apart from the R dependence.
The left side of Eq.(22) would appear to be the time rate of
change of the kinetic energy T; but the right side is not a
perfect time derivative of the form dU/dt that would permit
Eq.(22) to be immediately integrated to yield E = T + U, The
concepts of kinetic and potential energy become mixed in
neomechanics. For example, in nuclear physics the mass of
the nuclues, that enters into its kinetic energy, is given
by the potential energy between the nucleons (as shown, for
example, by Wesley and Green [25]).

It should be clear that nature does not in general
permit the total energy to be separated into kinetic and
potential energies. Attempts to force such a separation
can lead to error, such as the incorrect (for Ilarge
velocities) Weber potential energy, Eq.(6).

5. SLOWLY VARYING EFFECTS

The significant relevant extensive evidence for the
proposed force, Eq.(l), for slowly varying effects has
been collected together and presented elsewhere [1-4]. It
may be immediately seen from Eq.(l) that it yields Ampere's
[7] original empirical law, Eq.(3), for the force between
steady currents in neutrally charged conductors. In general
the use of linear current elements in Ampere's law is not
empirically correct; as it yields an infinite force when
two colinear current elements are brought together, and
no such infinite force is observed in nature. The empiri-
cally correct form of Ampere's law involves volume current
densities J and J'; thus,

C'AF /d'rd’r' = (R/R*)[- 20-0' + 3TRUR/RY],  (23)

which implies no infinite forces.

One of the most interesting aspects of Ampere's law is
the large repulsive force between colinear current elements
giving rise to the Ampere tension. Ampere [7] demonstrated
this force gqualitatively with the force on his Ampere
bridge, a [] shaped wire with ends in mercury troughs
connected across a battery. The force on Ampere's bridge
could not be quantitatively confirmed until Wesley [26] was
able to integrate Eq.(23) in closed form. The force on a
bridge of width L in a rectangular circuit of width L and
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length M with wires of circular cross section of radius
r, small compared with L and M, carrying a current I, is

¢’F, (bridge) = 21°[ 122 - 3/4 + In (L/v) (2%)
+ 1+ L0 - 1a(1 + /1 + L/MY)].

Moyssides and Pappas [27] were able to confirm this predic-
tion quantitatively in the laboratory.

The Ampere tension is of the right order of magnitude
[28] to account for the rupture and fragmentation of wires
carrying heavy current as observed by Graneau [29] and
others [30].

The Ampere tension yields an estimate [31] of the
force that drives the Hering [32] - Graneau [33] wedged
shaped copper submarine in a trough of current carrying
mercury.

The force necessary to drive the current carrying
mercury in Hering's pump [32,34] may be accounted for by
Ampere's force law involving both a pinch effect as well
as Ampere tension [35].

As originally shown by Weber, the force on a stationary
charge q due to an accelerating charge q',

F(induction) = (qq'R/R’)[-—a'-R/c’], (25)

the last term in the square bracket of Eq.(l1) for the
proposed force, yields Faraday's law of induction of an
emf when integrated around a closed loop [36].

The proposed force also accounts for the localized
unipolar induction observed by Miiller [37] and Kennard [38]
(Wesley [39]).

6. ELECTRODYNAMIC FIELDS

The proposed force, as given by Eq.(l), is only
applicable to slowly varying effects, where time intervals
of interest 6t > L/c, where L is the dimension of the setup
or laboratory. It is an action at a distance theory. To’
extend the theory to encompass rapidly varying effects,
where the time for an effect to travel from a source to a
detector can no longer be neglected, fields must be intro-
duced. A field theory also offers powerful mathematical
methods for solving problems.

Introducing continuously extended source and detector
with charge densities and p' and current densities J and
J', Eq.(1) may be written as
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c’d®F/d’rd’r' = (R/R*)[c’pp' - 2J-J"

(26)
+ 3(J-R)(J"-R)/R* - pR-3J'/dt + p'R-3J/at].
Integrating over the primed sources, Eq.(26) yields
d’F/d’r = ~pV® + Ix(VxA)/c - pdA/atc -~ JV-A/c (27)

(33/3t)8/c® + (J-V)VT/c + pVal/atc - [(3J/3t)-V]G/c?,
where the field variables are defined by

() _fd’r'p'(r',t)/R, A= [fd°c'J'(r',t)/cR,

(28)
r

]

fd°c'R J'(x",t)/cR, G= fd’r'Rp'(c",t)/R.

The correctness of Eqs.(27) and (28) may be verified by
substituting Eqs.(28) into (27), placing all terms under
the(in;egral sign, and noting that the integrand is given by
Eq.(26).

These integral expressions (28) can also be transformed
into appropriate differential equations with suitable bound-
ary conditions. For example the first of Eqs.(28) implies a
potential ¢ satisfying Poisson's equation,

V20 = - 4mp . (29)

Since action can be assumed to travel with the finite
velocity of light c; the fields defined by Eqs.(28) may be
generalized to retarded and advanced fields by replacing
the time t by

tret = t - R/c and tagy = t + R/c. (30)

With these replacements (30) the fields, Eqs.(28), can
then also include the possibility of electrodynamic waves
and radiation. With either of these replacements (30) the
differential equations that the field variables satisfy,
such as Eq.(29), become wave equations. For example the
scalar potential ¢ is then a solution to the wave equation

V2p - 320/93t2¢c2 = - 4mp . (31)

When the retarded time is used the primed charge distribu-
tion acts as a source; and, when the advanced time is ysed,
the primed charge distribution acts as a sink.

The limited Maxwell theory involves only the first
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three terms of Eq.(27) and only the ¢ and A fields. The
Maxwell theory fails when the remaining terms in Eq.(27)
are needed along with the additional I' and G fields.

A particular example of the success of the present
field theory for rapidly varying fields and the failure
of the limited Maxwell theory is provided by the observed
zero self-torque on the Pappas-Vaughan [40] Z-shaped antenna

[41].

7. OBSERVATIONS WITH FAST CHARGES

The Kaufmann [10] - Bucherer [11] experiments involve
balancing the electric and magnetic (B = V x A) forces
on a fast electron passing parallel to the plates in a
condenser. To obtain the force on a charge in a condenser
according to the proposed force, Eq.(l), the force due to
a single infinite plate with a surface charge density o
may be first considered, Letting the z axis be perpendicular
to the plate at z = z', the force on a charge e on the
z axis at z due to a surface element of the plate is given

from Eq.(1) by
d'F = eopdpd$(R/R*)[1 + a-R/c?], (32)

where e and ¢ are cylindrical coordinates in the plane
perpendicular to the z axis and where

R =-pj+ (z-2")k, (33)

where j and k are unit vectors in the p and z directions.

From symmetry it is clear that no force can act in
the radial direction, and the radial component of the
acceleration is a matter of indifference. The force in
the z direction is then given by

27 0.
F, = ec [d¢ [pdp[(z-2")/R*][1 + a (z-2')/c?]. (34)
0 o)

Performing the integration yields

F, = 2n0e[l + a,(z - z')/c’]. (35)
Adding a second plate with a charge density - ¢ at z = 2",
where z' < z < z", the net force on the charge e in the
condenser becomes
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Fz = 4n0e{1 + az[z - (z'+z")/2]}. (36)

Since the plates can be placed infinitely far apart; - it is
clear that no specific origin is possible to yield a force
depending on z. Thus, the value of z in Eq.(36) may be
suitably chosen here as z = (2' + 2")/2, midway between the
plates. In conclusion the force on a chage e in an infinite
plate condenser according to the present theory is simply

F, = 4n1ce = eE, (37)

where E is the constant electric field.

For the magnetic force produced by closed current
loops carrying steady current all terms vanish in Eq.(27)
except Jx (VxA)/c = JxB/c = evx B/c; thus,

F(magnetic) = ev xB/c (38)

Since v is chosen perpendicular to B and E in the Kaufmann-
Bucherer experiments; the electric and magnetic forces
balance in the condenser, yielding

v/c = E/B. (39)

In the magnetic field alone the electron moves in a circle
whose radius r, according to neomechanics, or mass change
with velocity, is given by

mv’/r-Jl -~ v?/c? = evB/c. (40)

Combining Eqs.(39) and (40) yields the velocity variable
mass as (41)

erB*/c’E = m +1 - v'/c*® =m(1 + E*/2B* + 3E*/8B* + . . .).

This is the traditional result. The 1/2 coefficient of
the second term on the right has been empirically confirmed
to about 5 percent accuracy.

The explanation of the Bertozzi [15] result follows
from Eq.(37) and neomechanics in the traditional way. The
electric energy supplied to the electron travelling a
distance D in the constant electric field is eED = eV, where
V is the usual potential difference. This electric energy
supplied should equal the resultant neomechanical kinetic

energy; thus,
mc®/+/1 = vi/c? —=mc? = eV. (42)
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Bertozzi measured the potential V and the time of flight
velocity of the electron for velocities approaching the
velocity of 1light c. The expected value of v?/c? was
observed to about a 2 percent accuracy for five values from
v/c? = 0.75 to 1.00.

It is, thus, seen that the proposed electrodynamics
based on the force, Eq.(l), agrees with experimental
observations involving charges approaching the velocity
of 1light c, assuming neomechanics, or mass change with
velocity.

8. THE THEORY APPLIED TO GRAVITATION

Since Coulomb's law and Newton's universal law of
gravitation have the same geometrical character; it is
reasonable to speculate that the proposed force, Eq.(1l), is
also valid for gravitation when qq' is replaced by - Gmm',
where G is the universal gravitational constant and m and m'
are the. gravitating masses.

It is of particular interest to examine the force on an
accelerating mass m due to the distant stationary masses m'
in the rest of the universe. From the 5th term on the
right of Eq.(27) this force according to the present theory
applied to gravitation is

F = - mad/c?, (43)
where
¢ =GJfd’r" ' (r*)/R, (44)

where here p'(r') is the mass density of the universe. The
minus sign in Eq.(43) indicates a force opposite to the
acceleration. This result (43) confirms Mach's principle,
if

d/c? = 1. (45)

This Eq.(45) represents a cosmological condition for
proposed models of the universe [42].

Since the inertial reaction, according to neomechanics
is d(ymv)/dt instead of ma; the acceleration in the
proposed force, Eq.(l) can be replaced by

a » d(yv)/dt = d(v/+/1 - v'/c?*)/dt. (46)
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9, DISCUSSION

Since the experiments usually cited to establish
neomechanics involve simultaneously questions about the
electrodynamics as well as the mechanics; the conclusions
based on these experiments have been questioned as ambigu-
ous. The electrodynamics proposed here fits all known
observations if neomechanics, or mass change with velocity,
is assumed. This success, thus, seems to provide strong
evidence in favor of neomechanics as well as the proposed
electrodynamics. In addition, there is evidence for neome-
echanics that does not depend upon electrodynamics.
Neomechanics can be derived from the Voigt-Doppler effect
for light by considering the momentum and energy of photons
[43]. Using mass-energy equivalence, that is firmly
established empirically in nuclear and particle physics,
the change in kinetic energy v.d(mv) of a particle may be
equated to a change in its mass-energy [44]; thus,

d(mc?) = ved(mv) = vidm + md(v*/2). (47)

This Eq.(47) may be immediately integrated to yield

m = mo/%/l - v/t , (48)

where m, is a constant of integration, the mass when v = o.

Empirically it would appear that the absolute velocity
of the particle is needed in the y factor for neomechanics,
as assumed here. The radiocactive half-life of cosmic-ray
muons, being proportional to the y factor and thus to the
absolute velocity of the muons, produces an anisotropy in
the sea-level flux of muons. Observations of this anisotropy
[45] has been used to determine the absolute velocity of the
solar system in agreement with other observations.

The present theory is empirically oriented. It is
correct only in terms of the experimental evidence that is
available today. The theory may not prove to be correct when
future experimental evidence becomes available. The evidence
available for slowly moving charges and slowly varying
effects is extensive and is probably adequate. In this range
the present theory is undoubtedly correct (in contrast to
the Maxwell theory).

The evidence available for rapidly moving charges is
very meager indeed and inadequate. Instead of relying upon
presumed electrodynamic theory to assign velocities to
charges, their actual velocities need to be measured as time
of flight velocities, as in Bertozzi's [15] experiment.
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In addition, the neomechanics, assumed here, may not
prove to be precisely correct when adequate high velocity
experiments are performed, where the time-of-flight velocity
of charges are actually measured. Some other function of the
velocity might be found for the kinetic energy instead of
me’(y - 1).

Although the present theory is correct empirically for
high velocities; it may not be quite correct in principle.
In particular, for the case of comoving charges, where v
= v', the force, Eq.(1), becomes

F = (qa"R/R*)[1 - (2 - cos*8)v*/c*], (49)

where 6 is the angle between v and R. The Coulomb force
would thus appear to be a function of the absolute velocity
of the laboratory and its orientation with respect to the
separation vector R, which does not seem reasonable. But
this effect is very minute and has never been observed.
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