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Michelson—Morley Result, a Voigt—Doppler
Effect in Absolute Space-Time
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Voigt’s 1887 explanation of the Michelson—-Morley result as a Doppler effect
using absolute space-time is examined. It is shown that Doppler effects involve two
wave velocities: (1) the phase velocity, which is used to account for the
Michelson—Morley null result, and (2) the velocity of energy propagation, which,
being fixed relative to absolute space, may be used to explain the results of
Roemer, Bradley, Sagnac, Marinov, and the 2.7°K anisotropy.

1. INTRODUCTION

Considering the dissatisfaction with special relativity"™ and the
accumulation of experimental evidence that does not appear to be com-
patible with special relativity,"*™® it is of some interest to investigate Voigt’s
1887 research® in which he explains the Michelson-Morley result as a
Doppler effect appropriate for light using absolute space-time. The classical
absolute space-time physics of Newton and the great physicists of the past
deserves consideration today.'?

Absolute space is defined here as the space established by physical
observations anywhere in the universe that makes the universe appear
isotropic in the large.""’ For example, the frame of reference in which the
2.7°K thermal cosmic background appears isotropic defines ansolute space.
Absolute time is defined here as the time registered by standard clocks
anywhere in the universe.'* For example, the frequency of the 2.7°K
background peak provides in principle a standard universal clock (actually,
a single unique clock for the whole universe) that defines absolute time.
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Voigt assumed that a moving observer should see an electromagnetic
wave that is also a solution to Maxwell’s equations in his own coordinate
system. Voigt thereby obtained the relations that are today inappropriately
called the Lorentz transformation. Voigt represented his Doppler effect
mathematically in terms of space and time variables, whereas the Doppler
effect can involve the propagation constant and frequency only. Voigt’s
unfortunate mathematical representation of his Doppler effect in terms of
space and time apparently led Lorentz and others to naively conclude that
space and time themselves might actually change in a moving system.

The Voigt—-Doppler effect for a stationary source and a moving obser-
ver in terms of the propagation constant and frequency has been presented
in a previous paper''” without, however, giving due credit to the original
research of Voigt. In this quoted paper the phase velocity was also presen-
ted as being indeterminate within certain limits; but this cannot be true.
The phase velocity is uniquely prescribed as indicated below.

One of the difficulties in space-time research has been the assumption
of a unique velocity of light. However, Doppler effects necessarily involve
two velocities and not one: the phase velocity and the velocity of energy
propagation. These two velocities need not have the same magnitude nor
direction. The phase velocity appears in the wave equation; the velocity of
energy propagation is given by the Poynting vector divided by the energy
density. Nothing physical need be propagated with the phase velocity in
contrast to the velocity of energy propagation. A similar situation exists for
the propagation of light in a crystal, the phase and energy velocities being
in general different.

Voigt offered no explanation as to why his Doppler effect, appropriate
for light, should differ from the classical Doppler effect. The explanation
has been indicated in the previous paper!'®. The classical Doppler effect is
an idealization that neglects the physical coupling of the source and the
observer to the wave field. The observer must extract energy and momen-
tum from a light wave in order to detect the light wave. The process of
observation, thus, alters the nature of the wave observed. In particular, the
Voigt-Doppler effect differs from the classical Doppler effect due to the
mechanical recoil of the observer.

2. CLASSICAL DOPPLER EFFECT

2.1. Water Waves Viewed from an Airplane

To stress the fact that two wave velocities are involved and not merely
one, the Doppler effect for an observer flying in an airplane looking down
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upon water waves is considered. The situation is familiar to most of us.
There is no coupling between the water waves and the observer, so that
only kinematics is involved.

Letting the airplane fly in the positive x direction with a velocity v,
and letting the water waves have a phase velocity ¢ as measured on the
stationary earth, where ¢ makes an angle with respect to the x axis, as
shown in Fig. 1, the resultant phase velocity observed from the airplane
may be readily deduced as

¢'(phase) =c¢(1 —v,-¢/c?) (1)

using the fact that by definition the phase velocity is perpendicular to the
wave crests, or parallel to ¢, and that the observed wavelength A remains
unchanged.

White caps that occur occassionally on the wave crests move with the
physical wave velocity, the velocity of energy propagation. As observed
from the stationary earth, this velocity of energy propagation is identical to
the phase velocity c. As observed from the airplane, the velocity of energy
propagation is simply the vector difference

c*(energy)=c—v, (2)

as indicated in Fig. 1. As viewed from the airplane the white caps seem to

)’A

%:_‘%)l >/ c(1 - v,-c/c?)
SANEANEANE N

Fig. 1. Classical Doppler effect for water waves observed from an airplane indicating
the wavelength 4 and the two wave velocities: the phase velocity ¢’ and the velocity of
energy propagation c*.
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slip sidewise along the wave crests. The Doppler-shifted frequency is given
by
o' =cfi=w(l—-v, ¢/c?) 3)

2.2. The General Classical Doppler Effect

The classical Doppler effect is an idealized pure kinematical effect
where the physical coupling of the source and observer to the wave field is
neglected. It is best derived as a time retardation effect. Considering an
origin fixed in absolute space, an observer at the position r, sees a signal
which was emitted by the source at the position r, at an earlier time
[r,—r,|/c due to the finite velocity of transmission ¢ in absolute space. A
source varying sinusoidally with time with the angular frequency (—w) is
then observed as

sin( —wt*), where *=1t—|r,—r,|/c (4)

For the source and observer moving with constant absolute velocities v,
and v,, the positions r, and r, become

r=s+v,, r,=r+v,t (5)

where s and r are positions at time ¢t =0.
Introducing the unit vector ¢/c in the direction of the instantaneous
arrival of the wave as seen in absolute space, where

¢/c=[r (1) —r(t*)]r (1) —r (%) (6)
the retarded time ¢* from Egs. (4) and (5) is given by
t*=t—c-(r—s4v,t—v,t*)/c? (7)
Substituting 7* from Eq. (7) into the first of Egs. (4) yields
i {w [e-(r—s)/c—c(1—c"v,/c?) t]}

c(l—c-v,/c?)

(8)

Since s is a constant, it merely indicates a change of the arbitrary origin for
r and may be dropped. The observed wave is then of the form

sin(k’ " r—'t) %)
where

k' =ke/c(1 —v,-¢/c?), o' =w(l—v, ¢/c?)/(1—v,-¢/c?)  (10)



Michelson—Morley Result, a Voigt—Doppler Effect in Absolute 821

where k = w/c. This result (10) is the classical Doppler effect for uniformly
moving source and observer. To complete the description, the two wave
velocities, the phase velocity ¢’ [Eq. (1)] and the velocity of energy
propagation relative to the moving observer ¢* [Eq. (2)], need to be men-
tioned. It may be noted from Egs. (10) and (1) that ¢'/c’>=k'/w’, as it
should.

3. VOIGT-DOPPLER EFFECT FOR LIGHT

3.1. Voigt-Doppler Effect for Stationary Source and Moving Observer

In order to predict the null Michelson-Morley result and similar
standing wave experiments, the reasonable empirical assumption can be
made that the magnitude of the phase velocity remains the same in a
moving system. This is apparent from the fact that interference patterns are
determined using the phase velocity. Following Wesley,'” it is convenient
to consider the invariant ¢’k — > Linearizing this invariant symmetrically
such that the component of k transverse to the direction of motion remains
the same yields

ckie=cy ko —ov,/c?),  cky=ck,
cki=ck., o=y (w—k.v,)

where
Vo= 1/3/1—0v}/c? (12)

where the primed system is moving with the absolute velocity v, in the
positive x direction. This result (11) and (12) is best regarded as simply an
empirical result to avoid questions as to the rigor of the derivation.

In order for the phase velocity to equal the velocity of energy
propagation when v, is parallel to ¢ and to agree with the classical Doppler
effect, the magnitude of the phase velocity |c¢’| is necessarily given by
Eq. (1). The Voigt-Doppler effect for light for a stationary source and
moving observer from Egs. (1) and (2) is then uniquely

k' = Y<)(Cx—uu) ex+cyey+cze:
c(l1—v, ¢/c?)

w’:w'y“(l —VO'C/CZ)
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where e, e,, and e, are unit vectors in the coordinate directions. The two
wave velocities relative to the moving observer are then

¢'(phase)= [y, (c,—v,) e, +c,e, +c.e. 1y,
(phase) = [7,( ) € 17 (14)

c*(energy)=c—v,

This result (13) and (14) may be compared with the classical Doppler
effects, Egs. (10), (1), and (2). It may be readily shown that Eqs. (13) yield
a null result for the Michelson-Morley experiment for the case of a
stationary source and a moving observer, which corresponds to the use of
starlight as a source.

3.2. Voigt—-Doppler Effect for Moving Source and Stationary Observer

From symmetry the roles of o’ for the moving observer and  for the
stationary source may be reversed in the second of Egs. (13); so the
frequency observed by a stationary observer w, produced by a moving
source of frequency w,, with the absolute velocity v , becomes

w,=0,/7(1=v, c/c?),  where y,=1//T—02/c  (15)

Since the observer is stationary, the phase velocity relative to the observer
is ¢’=c¢. From k,=cw,/c> the propagation constant from Egs. (15)
becomes

k=k,c/cy,(1—v,-c/c*) (16)

This result (15) and (16) is identical to the classical Doppler effect,
Egs. (10) for v, =0, except for the v, in the denomenator.

Since the invariance of ¢2k2 — w? is preserved for a uniformly moving
source, the Michelson—Morley null result is predicted whether the source
moves or not.

3.3. Voigt-Doppler Effect for Both Source and Observer Moving

Substituting Eqgs. (16) and (15) into (13), where k, and o, replace k
and o, yields the Voigt-Doppler effect for a source moving with the
absolute velocity v, and an observer moving with the absolute velocity v,,;
thus,

YolCx—v,) et c e, +c e,
fey(1—v, /)1 —v, ¢/c?) (17)
' =w,y,(1—v, ¢/c*)/y,(1—v, ¢/c?)

k'=k
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The phase and energy velocities relative to the moving observer are again
given by Eqs. (14), the velocity of the source not being involved.

For the case of an ether wind, which is appropriate for the
Michelson—Morley experiment, the Voigt-Doppler effect from Egs. (17)
and (14), setting v,=v,=ve,, may also be shown to yield the
Michelson—Morley null result.

4. OBSERVATIONS EXPLAINED BY THE VELOCITY OF ENERGY
PROPAGATION

The measurement of the one-way velocity of arrival of light to the
earth which does not involve a knowledge of the frequency or wavelength
yields necessarily just the velocity of arrival of energy, since the other
possible wave velocity, the phase velocity, defined as the wavelength times
the frequency, is not known. The measurements of Roemer and Bradley,
thus, yield the velocity of energy propagation of light ¢*.** Since the
Bradley aberration is the same for all stars independent of their possible
absolute velocities, the velocity of energy propagation of light is ¢ relative
to absolute space (as assumed by Bradley). The Roemer result is also con-
sistent with the assumption that the velocity of energy propagation of light
is ¢ fixed relative to absolute space (as assumed by Roemer). It also
demonstrates that the velocity of light is, in fact, fixed in absolute space to
within the fractional accuracy V/cx0.001, where V is the velocity of the
solar system. Assuming that the 2.7°K thermal cosmic background
radiation is isotropic, then the velocity of energy propagation of light must
be unique as ¢ fixed in absolute space. The earth moving through absolute
space receives this one-way thermal energy flux at a rate proportional to
¢+ v in the forward direction and ¢ — v in the rearward direction, where v is
the absolute velocity of the earth, which accounts for the anisotropy obser-
ved (as assumed by Conklin who discovered the anisotropy).”

The Sagnac positive result'® using moving equipment may be most
easily explained in terms of the velocity of energy propagation of light
being ¢ fixed in absolute space (as assumed by Sagnac). The ingenious
Marinov coupled-mirrors experiment‘® involves the one-way transit time
of light in the laboratory. Making the assumption that the velocity of
energy propagation of light is fixed in absolute space, Marinov measured
the absolute velocity of the solar system in the closed laboratory. His result
agrees with that obtained from the 2.7°K cosmic background anisotropy,
but his accuracy is greater. He has recently obtained a similar result*
with two toothed wheels mounted on the ends of a rotating shaft, which
involves no mirrors at all.
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