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Contrary to Northrup's claim, the pinch effect, predicted 
by either the Biot-Savart law or the original Ampere law, 
accounts for less than half the necessary force to drive 
Hering's pump . The longitudinal Ampere tension, which is 
not predicted by the Biot-Savart law, is sufficient to 
account for the remaining force necessary. 
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1. BACKGROUND 

Hering's { 1} pump supplies further evidence for the 
original Ampere {2} force law. A large amount of experimen-
tal evidence (1-10} has accumulated over the last 170 years 
establishing the correctness of Ampere's original force 
law. The success of Weber { 11} electrodynamics, generalized 
from Ampere's original force law, particularly in explaining 
the unipolar induction experiments of MUller { 12} and 
Kennard {13}, provides further evidence for the correctness 
of Ampere's original force law. The success of the Weber-
Wesley (14} field theory in predicting the zero self-torque 
on the Vaughan-Pappas { 15} Z-shaped radiating antenna also 
provides evidence for the original Ampere law. 

Despite this evidence, papers {1,16-22} still continue 
to appear claiming that the original Ampere force law is 
wrong and that the effects observed can be explained using 
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the Biot-Savart-Maxwell theory. The Biot-Savart law, 
violating Newton's third law, can be shown to be "absurd" 
( 23}, as it can predict no unique value for the force on 
Ampere's bridge. Attempts to validate the Biot-Savart law 
(where a closed current loop does not form a loop that 
is mechanically closed) involve errors, such as the viola-
tion. of Newton 1 s third law, that may be readily exposed 
{ 14} • For example, Wesley { 24} has shown Peoglos' { 22} 
claims to be unjustified. The present analysis of Hering's 
pump should help to settle the matter in favor of Ampere's 
original force law. 

2. HERING'S PUMP 

A diagram of Hering's pump, as construe ted for the 
experiment performed in 1907 by Northrup { 1} is presented 
in Fig. l. A cylindrical tube of radius R2 with a stricture 
of radius R 1 is filled with mercury. When a current r-
flows (in either direction) the mercury rises to the height 
h in a small tube provided above. The mercury then forms 
a fountain or overflows into an appropriate reservoir and is 
returned via a small hole in the stricture. 

Hg 
radius R2 

radius R1 

Fig. 1. Diagram of Hering's pump indicating the cylindrical 
tube of radius R2 with the stricture of radius R1 • A mercury 
fountain is produced above when a current I flows. 
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3. THEORY OF PINCH EFFECT 

Neither Hering { 3} nor Northrup { 1} seemed to have 
been aware of Ampere's (21 original force law nor Weber {11} 
electrodynamics; as they do not refer to them nor apply 
them. Yet the action of Hering's pump can only be explained 
using Ampere's original force law; and it cannot be 
explained using the Biot-S avart-Maxwell theory. It is thus, 
important, even now, 86 years later, to supply the missing 
theory, that actually explains the action of Hering's pump . 

Ampere's (2,14} original force law in terms of volume 
current densities is given by 

where d6 FA /d 3 rd3 r' is the force on an element of current J 
in abamp/cm' at r due to an element of current J' at r' and 
R = r - r'. This force acting along the line between the 
current elements and being antisymmetric to interchange 
of r and r', obeys Newton's third law. This Ampere force, 
Eq.(l), may be contrasted with the force prescribed by 
the Biot-Savart-Maxwell theory: 

d6 F8 /d 3 rd 3 r' = Jx (J' x R)/R 3 = {- (J•J')R + (R·J)J'}/R 3 , (2) 

which clearly violiltes Newton's third law; as it is not 
directed along R. The force is alwilys suppose to act 
perpend1c ular to the current element J. 

Northrup { 1) attempted to derive the force driving the 
mercury in Hering's pump from a "pinch effect" prescribed by 
the Biot-Savart-Maxwell theory. Forces lateral to the 
current flow are suppose to give rise to a pressure within 
the mercury which drives the liquid mercury from a high 
to a low pressure zone in the axial direction 0f the device. 
Northrup uses the effect of the magnetic field produced 
by an infinitely long cylinder carrying current on the 
current itself to obtain the following pressure Pa as a 
function of the radial distance p from the axis 

(3) 

where I is the total current in abamperes and Ro is the 
outside radius of the cylinder 

This result (3) may also be obtained from direct action 
at a distance by performing the appropriate integrations 
of the first term on the right of Eq.(2). The direct 
integration is to be preferred to the indirect method 
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involving a magnetic field; as it avoids all questions 
concerning the interpretation of the magnetic field and 
its effects (For example, can a static magnetic field do 
work on stationary material?). The radial component of 
interest giving rise to the pinch effect from the first 
term on the right of Eq.(2), choosing the point of observa-
tion at z "" 0 and 4> = 0, is given by 

(4) 

where the current density is assumed to be uniform, J' = J, 
and where 

d3 r' .. 
Rp= p- p' coscj)', R2 = 

(5) 
p2 + p' 2 - 2pp' cos cl>' + z' 2 • 

Dividing by the lateral area 2nPdz, the pressure of interest 
is given by 

R. 2rr P 211' oo 
P8 = (J 2 /2n) J dp J dcj) J p 'dp' J del>' J dz' (6) 

I? 0 0 0 _.., 

Substituting Eqs.(S) into (6) and performing the indicated 
integrations again yields the result (3). 

If the pressure Pa also acts in the axial direction, 
the net average axial pressure over the transverse areu 
of the cylinder is given from Eq.(3) by 

(7) 

The difference in pressure between that in the cylinder 
of radius R2 and that in the stricture of radius R1 , that 
can presumably drive the mercury in the pump, is then given 
by 

6P8 = ;gh • (P/2n)(l/Rf; 1/Rp, (B) 

where ; is the density of the mercury, g is the acceleration 
of gravity, and h is the maximum height to which the mercury 
can rise above the level in the reservoir. Since the Biot-
Savart force acts perpendicular to the current density 
J; this pinch effect given by Eq.(S) is the only effect 
that can drive the mercury in Hering's pump according to 
the Biot-Savart law. 

Ampere • s original force law ( 1) yields precisely the 
same pinch pressure, Eq.(3) and the same average pressure, 
Eq.(7), as the Biot-Savart law (2), which may be readily 
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verified by performing the same integrations indicated 
in Eq.(6), using both terms in the bracket of Eq.(l). 
This agreement between the two laws for the transverse 
force acting is 1 of course 1 to be expected. 

4. THEORY FOR AMPERE LONGITUDINAL TENSION 

In contrast to the Biot-Savart law (2), which predicts 
no longitudinal force in the direction of the current, 
Ampere's original force law (1) predicts such a longitudinal 
force, which helps to account for the force necessary to 
drive Hering's pump. 

To make it clear that the longitudinal Ampere tension 
arises primarily from two current carrying conuctors in 
contact the longitudinal force acting on a cylinder of 
length M/2 and radius R0 , carrying a current density J in 
contact with a coaxial cylinder of the same length and 
radius carrying the same current may be considered. For 
this case Eq.(l) yields the force in the z direction 

R 
F(cylinder) = J 2f 21T M/2 R 21T o 

0 

pdp J dell J dz J p'dp' J dcll'J dz' 
o o o o -M/2 

(9) 

where R2 is given by the last of Eqs.(S) and 

Q2 = p2 + p' 2 - 2pp'cos (ell- ell'). (10) 

Assuming that Q 21M 2 < 1T R 2 1M 2 is small, then Eq. ( 9) yields 
0 

F(cylinder) = ! 2 ( -1 -ln2 + lnM)- J 2 f f f f ln Q. (11) 

Since the ell' integration can be carried out over any 21T 
interval; the integration over ell' yields from the tables of 
integrals [25 J 

2lT J dell' ln (p2 + p' 2 - 2pp'cosell') = 
0 

wi·r· . p" - 4{pp')'J • { 21T ln p 
21T ln p 

for 
for 

(12) 

p > p' I 
p < p'. 
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Substituting Eq.(l2) into (11) and completing the remaining 
integrations yields 

F(cylinder) ""I2 ( -3/4- ln 2 + ln (M/R0 )). (13) 

This result (13) (for R
0 

small) is seen to be primarily a 
result of the interaction of the two current carrying 
cylinders in the immediate neighborhood of the contact, 
as given by the integral over lnQ in Eqs . (ll) and (12). 
Comparing this tension with the average pinch force given by 

times Eq. ( 7), it is clear that the dominant force 
acting can be the Ampere tension rather than the pinch 
effect. 

If M were allowed to go to infinity in Eq. (13) (as 
assumed above in calculating the pinch force, Eq.(6)) the 
longitudinal Ampere force would go to infinity. This cannot 
occur in fact; because the electrical circuit has to be 
closed, which means that M must remain finite and other 
forces due to to the remaining portion of the circuit also 
act on the cylinder. 

To obtain a rough estimate of the longitudinal Ampere 
tension or stress in the mercury in Hering's pump due to the 
entire circuit the force on Ampere's bridge may be consider-
ed, where the circuit is a circle of radius W and the bridge 
forms half of this circle . From the symmetry in this case 
the electromagnetic body forces acting on any small portion 
of the circle must be the same anywhere in the circuit. 
If the electromagnetic body forces create a tension T per 
unit length of the circle, then the net force on the half-
circle bridge is given by 

F(bridge) 
lT/2 

2W J T sinQ> dQ>. 
0 

(14) 

Since T is a constant independent the tension per unit 
length created by the electromagneitc body forces is given 
in terms of the force on Ampere's bridge by 

T a F(bridge}/2W. (15) 

(It is a matter of indifference here if this tension 
t is assumed to be a result of longitudinal or lateral 
forces.) 

In the mercury in Hering's pump the only forces that 
can act are the electromagnetic and gravitational body 
forces on the mercury itself. The rigid boundaries can 
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play only a passive role. For a cylinder of length M forming 
a small portion of the total (circular) circuit the total 
tension developed by the electromegnetic body forces may 
be approximated by 

M • F(bridge)M/2W. (16) 

Since the force on a semi circular Ampere bridge in a 
circular circuit is difficult to derive mathematically 
and it has never been measured; it is sufficient here for 
a rough estimate to consider a rectangular circuit of sides 
P and L, where the movable bridge consists of the side L 
with legs as portions of the two sides of length P (the 
force being independent of the length of the legs) [ 26]. 
Using Eq. ( 13) for the case M = P and carrying out the 
remaining integrations, the force on Ampere's bridge for 
conductors of circular cross section is then given by 

F(bridge) = 2!2 [- 3/4 + ln 2 + ln (L/R 0 ) 
(17) 

+ -./1 + vz;pz- ln (1 + -./1 + L2 /P2 )). 

In ignorance of the precise geometry of Northrup's 
entire circuit a rough estimate is given by considering 
a square circuit, where P = L. In this case Eq.(l7) becomes 

F(bridge) .. 2I2 (C + ln (L/R0 )), (18) 

where 

C .. -J2 + ln 2 - ln (,f2 + 1) - 3/4 • 0.4760... . (19) 

Replacing the radius W of the circular circuit by 
the side of a square circuit L such that the areas of the 
circle and square are the same 1 W • L/,frr 1 Eq. (16) yields 
an estimate of the longitudinal Ampere stress in a mercury 
cylinder of length M; thus, 

?(longitudinal) = M/rrR 2 = (MI2 (c + ln (L/R 0 )), (20) 

where C is given by Eq. (19) where R 0 is the radius of the 
cylinder. 

Including the pinch effect, Eq. ( 8), the net pressure 
available to drive Hering's pump according to Ampere's 
original force law (1) is roughly estimated to be 

# . 
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• (I2 /2rrRV{ 1 + 2-v'if(M1 /L)(0.4760 + ln (L/R1 ))} ( 21) 

- (I2 { 1 + 2-v'lf(M2 /L) (0.4760 + ln (L/R2 )J} , 
which may be compared with Eq. (8) for the pinch effect 
alone. This result (21) may also be compared with a prior 
estimate [27}. 

The energy to raise the mercury continuously in 
Hering 1 s pump is apparently derived from the same energy 
source as that required to sustain the current I against 
ohmic losses. 

5. EXPERIMENTAL RESULTS AND CONCLUSIONS 

Northrup [1] reports that for R2 = 1.27 em, R1 = 0.635 
em, and I • 180 abamp that the mercury rose to a maximum 
height of 

h(observed) = 1. 524 em. (22) 

According to formula (8), where the density of mercury 
is z: 13,546 gm/cm' and the acceleration of gravity is g = 
980.0 em/sec', the maximum height predicted by the Biot-
Savart-Maxwell theory should have been 

h(Biot-Savart-Maxwell) = 0.723 em. (23) 

This predicted height is, thus, less than half the observed 
height. Due to experimental imperfections the observed 
height should be less than the ideal height predicted by 
theory. Since no force other than the pinch force, leading 
to the prediction (23), is available to drive the mercury in 
Hering 1 s pump according to the Biot-Savart-Maxwell theory; 
the Biot-Savart- Maxwell theory fails. 

From Northrup's [ 1] Fig. 6 the height of the mercury 
cylinders are estimated to be M 1 • 2.54 em and M 2 = 3.36 em; 
and the dimension of the circuit is roughly chosen as L = 
18.3 em. From Eq.(21) the height the mercury should rise 
according to Ampere's law (1) is roughly estimated to be 

h(Ampere) = 2.048 em. (24) 

Although no numerical agreement can be expected here in 
ignorance of the precise geometry of Northrup's setup and in 
view of the approximations used; this result (24) does 
indicate that the Ampere theory, which includes both a 



103 

pinch effect; and a longitudinal tension can account for 
the force necessary to drive Hering's pump. 
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