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Proposal to Measure Absolute Velocity Using Two Independent Clocks

J.P. Wesley

Abstract
A toothed wheel rotated by an electric clock motor chops a laser beam. A sec
distance L from the first again chops the beam. The resultant intensity ts a linear
the angle through which the second wheel rotates during the time light travels the
At = L/(c — vp), where vy_is the absolute velocity of the laboratory in the di
Tuwo beams are oriented so that the chopping increases the intensity of one and decr
intensity of the other. Comparing these two intensities with the intensities of o
travehng in the opposite direction directly yields the desired absolute velocity v,

* electronically. The correct relative angular phase, determined by the intenss
obtamed by rotating one of the wheels together with its motor. The magnitude and .
of the absolute velocity of the solar system is obtained by fixing L in the nor
direction at a northern latitude and measuring vy, over a 12-h period.
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1. HISTORICAL BACKGROUND

Roemer!) in 1676 and Halley® in 1694 showed that the observed
one-way velocity of light depends upon the velocity of the observer. When
the Earth approaches Jupiter with the velocity v,, the observed one-way
velocity of light is ¢ + w,; and when the Earth recedes from Jupiter, the
observed one-way velocity of light is ¢ — w,. In particular, the observed
time between the eclipses of Jupiter’s moons is At" = A#(1 — v,/c) when
the Earth approaches Jupiter, and A#™ = A#(1 + w,/c) when the Earth
recedes from Jupiter. Knowing the Earth’s velocity v, and the mean period
At, Roemer was the first to measure the speed of light; thus

¢ = 20tv, /(A — AT, 1)

Conversely, knowing the value of ¢ and assuming the velocity of light is ¢
fixed with respect to absolute space or ether, Roemer’s data could be used
to plot the elliptical motion of the Earth relative to Jupiter without any
other astronomical information being necessary.

Bradley® in 1728 showed that the observed one- way velocity of light
depends upon the transverse velocity of the observer. In particular, the
observed velocity of light viewed transverse to the velocity of the Earth v,
is¢ + v, at one time of the year, and a half year later it is ¢ — v,. Thus al/
stellar objects lying in a direction normal to the ecliptic are observed to
execute a small annual circle the circumference of which subtends the
angle a, where

tana = v,/c 2

Measuring the angle of aberration « and knowing the value v, Bradley
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obtained a value for the velocity of light in agreement with
Again, conversely, knowing the value of ¢ and assuming the vel
light to be ¢ fixed relative to absolute space, Bradley’s data could
to plot the Earth’s circular motion.
Michelson and Morley®®) performed their famous experiment
Their null result was predicted as a Doppler effect using absolu
and time by Voigt,®) who was the first to present the equations th
now inappropriately called the “Lorentz transformation.” Voigt’s re
most readily obtained by linearizing the invariant %2 — o =
2, where K’ is the propagation constant and «’ is the angular freq
for a moving source and observer and k and w are for a stationary
and observer.!® The frequent erroneous claim that the Michelson-
result reveals the velocity of light to be isotropic independent
absolute velocity of the observer is based upon a general ignorance
Doppler effect. There are always tao wave velocities associated wi
Doppler effect (sound or light), the phase velocity and the velocity of
propagation. In general, these two velocities are neither in the
direction nor equal in magnitude. The phase velocity of light ¢’ for an
wind of absolute velocity v in the negative x direction, according
Voigt-Doppler effect, is given by

¢ (phase) = (c, — o)+ (c y ] te k)/y,

AN S . . . . v
where 1, 1, and % are unit vectors in the Cartesian coordinate dire
and
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magnitude of the phase velocity for light from Eq. (3) is given by
¢ (phase) = ¢(1 — v - ¢/cA). ()

r sound, ¢’ (phase) = ¢(1 — v * ¢/c).] In contrast, the velocity of
gy propagation is given simply (for sound as well as light) by

c* (energy) = ¢ — . 6

he Michelson-Morley experiment, involving interference, depends on
phase velocity ¢/, Eq. (3), and not the velocity of energy propagation c*,
(6). The null Michelson-Morley result is easily predicted using Eq.
Even Michelson seems to have been ignorant of the fwo velocities
ciated with a Doppler effect, since he made the mistake of thinking his
riment would detect ¢*, as given by Eq. (6). It may be noted that
ther ¢ not ¢* are isotropic, even though ¢’ yields a null result for the
icular Michelson-Morley setup.
agnac”) in 1913 divided a light beam into two beams that were
ected in opposite directions around a closed loop to then form an
rference pattern. When the setup was rotated, the fringe pattern
ted in such a way as to indicate that the light velocity of the beam in
direction of rotation of the mirrors was decreased to ¢~ = ¢ — o,
re v was the tangential velocity of the mirrors, while the light velocity
ter to the rotation was increased to ¢~ = ¢ + . No relative motion
ource and observer was involved. Sagnac explained his result in the
t obvious and simplest way possible. He claimed that the velocity of
t was ¢ with respect to a fixed luminiferous ether.
ichelson and Gale® performed the Sagnac experiment using closed
cal paths on the rotating Earth at a northern latitude. Comparing the
ge shift for a large loop with a small loop they deduced the absolute
city of rotation of the Earth. In principle, their observations could be
ied out instantaneously, in contrast to the Foucault experiment which
ired many hours. Thus they could determine essentially the Jinear
ential velocity of the rotation of the Earth’s surface. Michelson and
e brought the Sagnac experiment out of the laboratory and showed that
velocity of light is c relative to the fixed ether independent of any
tions of equipment,
nklin®® in 1969 was the first to measure the absolute velocity of the
system by measuring the 3°K thermal cosmic background anisotro-
He assumed the thermal cosmic background was isotropic and that the
city of light was c relative to absolute space or a fixed ether. An
rver moving with the absolute velocity through the cosmic back-
und will intercept more light in the forward direction than the
ard direction as a linear function of .1 The best value for the
lute velocity of the solar system by this method is probably that found
enryl) in 1971, who found » = 320 =+ 80 km/s, right ascension & =
* 4% and declination § = — 30 =+ 25°.
arinov(!? in 1974 measured the absolute velocity of the solar system
an ingenious “coupled mirrors” experiment. A mirror was mounted on
end of a cylinder rotating with an angular frequency N. The time it
light to travel the length of the cylinder L, AT = L(c — v;), was
rmined by the angular displacement A relative to the first mirror of
cond mirror mounted on the other end of the rotating cylinder. The
€ Was measured interferometrically; thus

Ap* = 87 RNL/N/(c — vy),

Te R is the radius of the cylinder, and A is the wavelength of light used.

Using an identical setup for light propagated in the opposite direction
down the cylinder, he measured the relative fringe shifts using two
independent photodetectors and a Wheatstone bridge. The absolute
velocity of the laboratory v; in the direction L was then given by

v, = (\H/8PLRN)YAI/L ), 8)

where AI/ 1, is the difference in the output of the two photodetectors to
the maximum output of one. The magnitude and direction of the absolute
velocity of the Earth, and thus the solar system, was obtained by taking
measurements for different orientations of L during the day. From the fact
that the velocity of light is ¢ with respect to absolute space or the ether in
the closed laboratory, Marinov measured the absolute value of the solar
system as v = 300 = 20 km/s, @ = 13.3 = 0.31, § = —21 = 4°. This
result, which Is in agreement with other determinations, is the most
accurate to date,

Marinovt'? in 1984 again measured the absolute velocity of the solar
system by mounting two toothed wheels on the ends of a rotating shaft. A
laser beam was chopped by the first toothed wheel and then by the second.
The amount of light, as measured by a photodetector, passing through the
second toothed wheel depended linearly upon the angle through which the
second toothed wheel rotated with respect to the first during the time it
took light to travel between the two toothed wheels a distance L. The
alignment was chosen such that the amount of light passing through the

second toothed wheel was an increasing linear function of the mismatch;
thus

AIY =T — Iy = KAtY = KL/(c ~ wy), )

where the proportionality constant K = 47RN/b, b is the width of the gap
between teeth, R is the radius of the wheel, and N is the number of
rotations per second. The intensity I, was chosen as 1/2 the maximum
possible intensity to maximize the sensitivity. A second independent laser
beam was sent through the rotating toothed wheels in the opposite
direction and was detected by an independent photodetector. The
alignment was again chosen so that the intensity was an increasing linear
function of the mismatch as indicated in Eq. (9) with ; being replaced by
—or. The absolute velocity of the laboratory v, in the direction L was
then given by

vy, =AY — AIT)/(AIT + AT, (10)

The intensity differences were accurately measured by balancing the
output of the two photodetectors in a Wheatstone bridge. The direction
and magnitude of the absolute velocity of the Earth, and thus the solar
system, were obtained by fixing the shaft L in the north-south direction at
a northern latitude and taking observations over a 12-h period. Marinov
reports an absolute velocity of the solar system by this method as » = 360
T4 km/s,a =125 10 8§ = -2+ 7°0n agreement with prior
observations,

2. DESCRIPTION OF THE PROPOSED EXPERIMENT

The experiment proposed here involves two independent rotating
toothed wheels driven by two independent clock motors. The two toothed
wheels are assumed to rotate at the same rate to a very high accuracy over
the period that an observation is made. Since the two toothed wheels are
independent of each other, they can be separated by a large distance L with
a corresponding increase in the time for light to travel between the two
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Figure 1. A diagram of the proposed experimental setup showing the two
laser sources, the two toothed wheels, the four light beams involved, and
the four photodetectors.

toothed wheels, At* = L(c — v;), and with a corresponding increase in
the accuracy of the determination of #y.

It is frequently claimed that the relative angular phase of two such
independent rotating wheels (or clocks) cannot be known, and, therefore,
the proposed experiment cannot yield any results. This claim is entirely
unwarranted, because the desired relative phase can be obtained to great
accuracy while both wheels are rotating by simply turning one of the
toothed wheels with its clock motor until the appropriate intensities (such
as indicated in Fig. 1) for light beams passing through the two wheels are
obtained. For two ordinary electric clocks supplied by the same
commercial current source, or for two independent quartz clocks, the drift
of the relative phase, once having been set, is completely insignificant over
the time observations are made. A readjustment of the relative phase can
always be made in any case.

The experimental setup is diagrammed in Fig. 1. Two toothed wheels 1
and 2 a distance L apart are rotated in the same sense at the same rate by
two clock motors (not shown). Light from laser S; is reflected at the
semitransparent mirror M; to yield light beam Bj. The beam B, is
chopped by the toothed wheel . After passing through the semitrans-
parent mirror M, (which is included simply to make all four beams
optically equivalent) and traveling the distance L, beam B, is again
chopped by toothed wheel ¥,. After passing through the semitransparent
mirror M, the resultant intensity I} is detected by the photodetector P;.
Light from laser S is also transmitted through the semitransparent mirror
M; and is reflected from the semitransparent mirror M, to yield the light
beam B,. The beam B, is then chopped by the toothed wheel W;. After
traveling the distance L, beam B, is again chopped by the toothed wheel
W¥,, beam B, passes through the semitransparent mirror Ms to yield a
light intensity I, detected by photodetector P,. It may be seen from Fig. 1
that beams B and B, arising from laser S, are similarly chopped and
similarly yield intensities ; and I, detected by photodetectors Ps
and Py.

Beams B, and B, are passed through neighboring gaps of width b
between the teeth of width d of toothed wheel W). The distance between
beams B, and B, as they pass from toothed wheel W, is b + d from center
to center. The mirrors M, and M can be adjusted so that the second
toothed wheel W, is illuminated by beams B, and B, closer together a
distance d apart from center to center, as shown in Fig. 2.
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Figure 2. Diagram showing the intensity of light beams B, and B
toothed wheel W, (dashed lines) illuminating the toothed wheel 17
that beams B, and B, are a distance d apart rather than b + d a
when leaving toothed wheel W).

When the toothed wheels are rotating, the teeth of toothed wh
move with the velocity V = 27RN, where R is radius of the wheel an
is the number of rotations per second. If the teeth of W, are assume
move to the right as shown in Fig. 2, then, after the time Af = L/(c
the intensity /; is increased from I,,/2 to

I = L /2 + 1 VLIbe — vp),

where I__,, is the maximum intensity possible when the toothed wh
stationary and the gaps are aligned. Similarly, the intensity I, is de
from I,,/2 to

I = I, /2 — I VLIb(c — o)
The intensities I; and I, are similarly given by

L= 1,/2 — I VL/b(c + vp),

I = Ly /2 + Ly VL/b(e + o).

From Egs. (11) and (12), and (13) the absolute velocity of the labor
the direction L is then given by

o = 6(11 -L) - - 13)_
(h-L)y+ U~ L

A negative result indicates that vy is in a direction opposite
assumed in Egs. (11) through (14).

The above expressions for I, Iy, I, and I, Egs. (11), (12), and
simplified expressions chosen for expositional purposes. The i
neous intensities will change as the entrance toothed wheel rota
chops the original incident beam. The beam illuminating the exit
wheel will then change with time. The photodetectors are ch
however, to register the time-average intensities and not instan
intensities. Considering time averages, the constant I . appearing 10
(11) through (14) should be replaced by an appropriate constant K
I ... The value of this constant K (which may be easily meas
experimentally) is a matter of indifference since, in the final formule
it cancels out above and below the line on the right. The effe
diffraction, which is small for a laser beam, is identical for all four b
and it merely changes the value of K, which remains a matf
indifference.
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3. ALIGNMENTS NECESSARY

The alignment of beam B, relative to beam B, can be done with the two
toothed wheels stationary. Observation of intensity differences can assure
the correct alignment. When B) relative to B, is correctly aligned, with
W) fixed, changing the angular position of W} can yield an intensity I as
a zero minimum when I, = ... Moving W, a distance b/2 then yields
Iy = L;x/2 = L and I} — I, = 0. A further displacement b/2 yields Las
azero minimum and I; = I,.. The relative alignment of Bj relative to B,
can be similarly done. No precise alignment of B, and B, relative to B,
and By is necessary. The constant I, must be adjusted to be the same for
all four beams. The constant I,,,, becomes K1,,,, when the toothed wheels
are rotated with time and the intensity is averaged.

The appropriate relative angular phase of toothed wheel W, with
respect to toothed wheel W) when both wheels are rapidly rotating at the
same rate can be obtained by statically rotating wheel W, together with its
clock motor until all four intensities are roughly equal (about KI,../2)
and I} ~ Iyand Iy — I, are each a minimum and (I, — L)-(, - L)
= 0. These conditions may be readily deduced from the optimum
situation as prescribed by Egs. (11) through (14).

ERRORS

Since the intensities are measured as the outputs of photodetectors,
the differences (1, — 1), (I, — L), [(l, — L) = (I, — I}, (I; - L),
(s — b),and [(I; — L) — (I, — L,)] can be measured with great accuracy
electronically using a Wheatstone bridge or an equivalent network. There
is at least a fractional improvement of 10% involved in measuring intensity
differences using a bridge as compared with measuring each of the
intensities separately and subsequently subtracting arithmetically.

As may be seen from Eq. (14), the final determination of the absolute
velocity of the laboratory v; in the direction L depends only upon
intensity differences and the accepted numerical value of ¢ (currently
based upon standing electromagnetic wave measurements). The error to be
associated with o is then to be experimentally estimated by the
reproducibility of results after realigning the apparatus and readjusting
adjustable parameters.

The rotational velocities of the two toothed wheels remain essentially
the same over the time that a measurement is made. If there were any
significant drift of the relative angular phase of the two toothed wheels, it
could be readily detected experimentally as a drift of (I, - L)y- (I, - L)
away from zero.

The distance between the toothed wheels L need not be known.
Similarly, the tangential speed of the two toothed wheels I = 27RN, and
the radius R and angular frequency N need not be known. Also, the gap
width b need not be known. Nevertheless, the larger the combination
27RNL/ b, the greater the sensitivity, because this measures the fraction
of the maximum signal I, that can be used to obtain significance. The

combination 27RNL/bc should be as close to unity as possible (but less
than unity for the theory presented here). A particular numerical example
may be considered for two toothed wheels placed a kilometer apart,
L = 10° cm, with radii R = 20 cm, rotating at N = 100 times a second,
with gaps between teeth of b = (.2 cm. The combination 27RNL/bc ~
0.2. This means that three-place accuracy should be readily attainable,

5. ABSOLUTE VELOCITY OF THE SOLAR SYSTEM
FROM ABSOLUTE VELOCITY OF THE LABORATORY
Fixing the length L to the Earth in the north-south direction at the
colatitude §, the observed velocity o; in terms of the absolute velocity of
the Earth v is given by

v, = vglcos (¢ — go)sin 0 sin ) + cos 6 cos By, (15)

where ¢ is the angular position of the apparatus in the equatorial plane asa
function of the sidereal time of day,
¢ = 2at/T, (16)

where T = 24h, ¢, is the sidereal equatorial position of the absolute
velocity of the Earth, and 6, is the colatitude of the absolute velocity of
the Earth. As a function of the time of day, v is a maximum when
9 = 9p Or

vy, (max) = vg cos(f — 6y). )]
When vy is a minimum ¢ = ¢, + /2 and Eq. (15) yields
vr(min) = v cos 6 cos b, (18)

The colatitude  of the absolute velocity of the Earth from Egs. (16) and
(17) is then given by

tan ) = cot 6 [v;(max) — v;(min)]/v; (min), (19)

and the magnitude of the absolute velocity of the Earth is
vg = {[oy(max) — vy (min)}® csc? 6 + o] (minjsec? )12, (20)
Consequently, it is only necessary to take observations of vy over a 12-h
period. Knowing the date when the observations are made, the absolute

velocity of the solar system can be readily obtained from the absolute
velocity of the Earth.

6. ADDED COMMENT

It may be noted that if sources and detectors are rotated with the
toothed wheels, an identical result is predicted. There will then be no
relative motion between sources and detectors, as for the Sagnac
experiment. Only the rotation with respect to absolute space or the ether is
then involved.

Received on 14 October 1988.
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