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Because parallax exactly masks Bradley aberration when 
ordinary terrestrial sources are used; it is proposed to 
measure the angle of parallax, and thus, the angle of 
aberration, by observing telescopically the appearance of 
a three dimensional object used as a source. For a setup 
rigidly fixed to the Earth's surface at a northern latitude 
the variation of the appearance of the object as a function 
of the time of day can then yield the magnitude and direc- 
tion of the absolute velocity of the Earth. 

Key words: Bradley aberration terrestrial, absolute velocity 
measurement. 

As discussed in a prior paper [lJ, light from ordinary 
terrestrial sources, radiating equally in all directions, 
cannot be collimated such as to yield a beam unidirectional 
with respect to absolute space (such as provided by star- 
light). Parallax for such an ordinary source exactly equals 
and masks aberration. It is, therefore, proposed that a 
small three dimensional object be used as a source, such as 
a small sphere, white on one side and black on the other. 
Such an object may be taken as simply a small thin rectang- 
ular white card making an angle ~ with respect to the view- 
ing direction, as shown in Fig. I. 

The telescopes shown are focused on the small white 
card, the background being black. The amount of light 
admitted into a telescope is proportional to the projection 
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Fig. I. Diagram showing how the appearance of a small 
white card, as measured by the amount of light received by 
two telescopes, can be used to measure the angle of Bradley 
aberration ~, when the laboratory moves with the velocity 
v in the plane of the figure as shown. 

of the surface area of the card norraal to the line of sight; 
thus, 

I+ = Kcos (¢ - ~) = K'(I + Otan¢). 

I- = Kcos (~ + [3) ~, K'(I - Btan.4), fl} 

where K and K' are constants. ~ is the angle between the 
normal to the card a.~d the initial line of sight for v = 
O, [3 is the aberration angle, I+ is the light intensity seen 
by the lower telescope, and I_ is the light intensity seen 
by the upper telescope as shown in Fig. I. The approximate 
equalities in Eq. (I) are for small values of the aberration 
angle [3. 
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As already known the absolute velocity of the Earth (or 
solar system) has a magnitude of about v = 300 km/sec; so 
the aberration angle, as given by sin~ = v/c ~ 8, can be no 
greater than the order of 0.001 radians or 3.4 minutes. 
Consequently the second terms in the brackets on the right 
of Eqs. (1) will be small. The appropriate strategy is to 
use photoelectric detectors to detect the amount of light 
I+ and I- and to measure the difference using a bridge 
network. The difference may be accurately determined 
yielding for the situation indicated in Fig. | the result 

= c o t  ~ ( I +  - I - ) / ( I +  + I - )  = v / c .  (z) 

The idealized situation presented in Fig. I, lying 
entirely in a plane, which illustrates the principles 
involved, cannot be readily realized in the laboratory. It 
is, thus, necessary to consider the more realistic and more 
complicated three dimensional geometry actually involved. 
The amount of light received by a telescope is proportional 
to the projection of the area of the card normal to the line 
of sight; thus, 

I = Kn.L/L, ( 3 )  

where K is a constant, n is the unit normal to the card, and 
L = r - ro is the vector distance from the card at ro to the 
point of observation at r. When the setup is translated with 
the absolute velocity v, the light that arrives at the 
detector must travel along the vector L' given by 

L' = r + vat - ro = L + vat, (4)  

where the end point r has moved a distance vat in the time 
At necessary for light to travel the distance L'. Substitu- 
ting At = L'/c in Eq. (4), squaring both sides, and solving 
for L' yields 

= L( I  + L . v / L c ) ,  (5) 

where the approximate equality means terms varying as v2/c 2 
N 10-6 have been neglected compared with unity. 

Combining Eq. (3), replacing L by L', with Eqs. (4) and 
(5), the amount of light received by the telescope when the 
Earth moves with the absolute velocity v is given by 

I = K ~ n . L / L  + n . v / c  - ( n - L ) ( L . v ) / L 2 c ~ ,  (6) 



80 Wesley 

where terms varying as v2/c 2 have been neglected. Employing 
the strategy of using two colinear telescopes, as indicated 
in Fig. I, the amount of light received by the second (or 
upper) telescope is given by Eq. (6) by replacing n by (-n) 

and L by (-L). The fractional difference which can be 
accurately measured is then given by 

Y = ( I +  - I _ ) / ( I +  + I _ )  = ( s e c 6 n  -L/L). (v/c) ,  ( 7 )  

where the fact that n.L/L = cos~ has been used. Measuring Y 
for different choices of the laboratory parameter s = 
sec ~n - L/L, which lies in the n,L plane and is perpen- 
dicular to L, can yield the magnitude and direction of the 
absolute velocity v of the Earth. 

There are many ways that one might proceed to find v. 
One particular method is presented here. Let L be rigidly 
fixed to the surface of the Earth lying in the north-south 
direction with the telescope placed south of the card. 
Introducing cartesian coordinates fixed to the Earth with a 
right-hand triad of unit vectors directed east eE, north eN, 
and up eu, the vectors L and n are given by 

L = - L e N 

n = sin~cosye E - sin~sinye N - cos~eu, 
( 8 )  

where y is the angle through which the card (or whole setup) 
can be rotated about the axis through the telescope, counted 
as positive when n moves downward, and ~ is kept fixed. 

It is convenient to introduce cartesian coordinates 
fixed with respect to the celestial sphere (or absolute 
space) with the unit vector e x in the direction of the 
vernal equinox, the unit vector ez in the direction of the 
celestial north (or the Earth's axis), and the unit vector 
e~ = ez xe x. The triad fixed to the Earth's surface in terms 
of the celestial directions are then given by 

e E = - s i n ~ '  e x  + c o s  oc' e y ,  

e N = - c o s c ( '  c o s 6 '  ex  - s i no~  v t o s S '  e y  + s i n 6  w e z ,  

e u = cos~' sin6' e× + sin~' sin6' e y  + cos6' e z ,  

(9) 

where ~' is the right ascension and 6' is the declination 
(or colatitude) of the laboratory. Substituting Eqs. (9) 
into (8) the three directions of interest, v, L, and n 
become 
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v/v = cos~ sin6e x + sin~ sin6ey + cos6ez, 

L/L = cos~' cos6' ex + sin~' cos6' ey - sin6' ez, 

n x = - sin~ cosysin~' - sin~ sinycosa' sin6' 

+ COS~ CCYSC~' COS6' , 

ny = sin~ cosycos~' - sin6 siny sin~' sin6' 

+ cos~ sina' Cos6', 

nz = - sin6 sinycos6' - cos~ sin6' 

(lO) 

It is now of interest to consider the fractional 
differences in light received Y, as given by Eqs. (7) and 
(IO), for the special cases when ~' = ~ and for 6 hours 
later when ~' = ~ + ~/2; thus, 

Y(~) = - (v/c) tan~ sinycos(6 - 6'), (II) 

Y(~ +~/2) = - (v/c) Lan~ (cosy sin6 + siny cos6' cos6 ). 

These results (11) suggest the following experimental 
procedure: First, the angle y is chosen as zero (y = O, as 
shown in Fig. I). Then when the right ascension of the 
laboratory ~' equals the right ascension of the absolute 
velocity of the Earth ~, Y will be zero, as given by the 
first of Eqs. (11); thus, 

YI = O when y = O, ~' = ~. (12) 

Second, the fractional difference is observed 6 hours later 
while y is still zero when ~' = ~ + ~/2. From the second of 
Eqs. (11) this yields 

Y~ = - (v/c) tan~sin6 when y = O, ~' = ~ + ~/2. (13) 

Third, the setup is rotated about the axis of the telescopes 
by 90 ° (so that n moves downward) so y = ~/2. In this case 
the second of Eqs. (II) gives 

Y3 = - (v/c) tar~cos6 ' cos6 

when y = n/2, a' = ~ + n/2. 
(14) 

From Eqs. (12), (13), and (14) the desired absolute velocity 
of the Earth v in direction and magnitude is given by 
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a = a' when y= 0 and YI = O, 

6 = tan -I (cos6' Y2/Y3) , (15) 

v = c c o t  6w/'Y~ + sec26'Y~ . 

P ro fe s so r  Edward Hale o f  the  U n i v e r s i t y  o f  .~L{ssouri- 
Rol la  hopes to  perform t h i s  experiment in  the near  f u t u r e .  
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