Proposal to Measure Velocity of a Closed Laboratory

J. P. Wesley ${ }^{1}$

Received December 16, 1980
Uncoupling the mirrors in Marinov's ${ }^{(1)}$ coupled-mirrors experiment allows them to be separated as far apart as desired, and orders of magnitude improvement in accuracy can be obtained for the determination of the absolute velocity of the ,closed laboratory.

Referring to Prokhovnik ${ }^{(2)}$ and Wesley, ${ }^{(3)}$ it is proposed to mount the two otating mirrors involved independently rather than on a single shaft. The wo mirrors are to be rotated by two independent motors (or clocks) which urn at the same rate. The intensities registered are then given by

$$
\begin{equation*}
I^{ \pm}=I_{0} \cos ^{2}\left[\left(\phi^{ \pm}+\phi_{0}\right) / 2\right] \tag{1}
\end{equation*}
$$

where I_{0} is the maximum intensity and

$$
\begin{equation*}
\phi^{ \pm}=8 \pi^{2} R N d / \lambda(c \mp v \cos \theta) \tag{2}
\end{equation*}
$$

Where R is the radial position of the mirrors, d is the distance between wirrors, N is the rotational frequency of either motor, $v \cos \theta$ is the rojection of the absolute velocity \mathbf{v} along \mathbf{d}, and ϕ_{0} is a phase constant.

The phase constant ϕ_{0} is unknown because the mirrors are uncoupled; put, whatever its value, it remains fixed over times during which the phases the two motors (or clocks) remain stable. Present day clocks running dependently cannot yield a sufficiently constant ϕ_{0}; but two clocks driven the same oscillator should keep ϕ_{0} constant. It is possible to choose the cometry such that the phase constant ϕ_{0} remains the same for the light cam traveling in the plus and minus directions, as indicated in Eq. (1).

[^0]It is possible to choose the phase constant ϕ_{0} to have any convenient value by rotating one of the motors (the housing). In particular, it is possible to choose ϕ_{0} such that

$$
\begin{equation*}
I^{+}=I_{0} / 2, \quad \text { where } \quad \phi_{0}=\pi / 2-\phi^{+} \tag{3}
\end{equation*}
$$

Substituting Eq. (3) for ϕ_{0} into (1) for I^{-}, using Eq. (2), yields to first order in $v \cos \theta / c$ the result

$$
\begin{equation*}
v \cos \theta=\left(c^{2} \lambda / 16 \pi^{2} R N d\right) \sin ^{-1}\left[\left(I^{-}-I^{+}\right) / I^{+}\right] \tag{4}
\end{equation*}
$$

All quantities on the right are observable. The quantity $\left(I^{-}-I^{+}\right) / I^{+}$may be determined using appropriate photodetectors and an electrical bridge network. The quadrant for the arcsine function may be determined by increasing N or d from small values.

A similar analysis and result is obtained when two toothed wheels are used to chop the light beams instead of the interferometric method of chopping discussed here.

The proposed experiment provides an inexpensive and accurate method for checking Marinov's reported results.

REFERENCES

1. S. Marinov, Gen. Rel. Grav. 12, 57 (1980).
2. S. J. Prokhovnik, Found. Phys. 9, 883 (1979).
3. J. P. Wesley, Found. Phys. 10, 803 (1980).

[^0]: Friedhofstr. 4, 7825 Lenzkirch, West Germany.

