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The cosmic-ray muon half-life, being proportional to γ = −1 1 2 2v c , depends upon its 

absolute velocity v v vo o
2 2 22= ′ + ′ ⋅ +v v , where ′v  is the muon velocity relative to the Earth 

and v o  is the absolute velocity of the solar system. The sea-level muon flux then depends upon 
v o  through ′ ⋅v v o . An approximate theory is presented for the absolute velocity of the solar 
system v o  as a function of the expected anisotropy of the sea-level flux of muons as a function of 
the celestial direction of ′v . A cosmic ray telescope was used to measure the muon flux as a 
function of the celestial direction. The observations yield a solar system velocity of 
v o  = 359 ± 180 km/s in the direction of right ascension α o  = 8.7 ± 3.5h and declination 
δ o = –1.1 ± 10.0° in reasonable agreement with results reported involving other methods. 

   

I.  Significance of this research 

It is of interest to know the absolute velocity of the 
solar system for a number of reasons: The fact that a 
solar system velocity can be observationally determined 
is further evidence for the existence of absolute space, a 
stationary ether, or a preferred zero velocity frame of 
reference, and it provides evidence against relativity 
theories. The measured value of the absolute velocity of 
the solar system, after subtracting off the velocity due to 
the general Milky-Way galactic rotation and 
translation, might provide an indication of dark 
neighbors to the solar system. Observations continued 
over the years might provide additional information. 

Bradley stellar aberration due to the absolute 
uniform motion of the solar system produces a small 
( v co ~10 3− ) fixed distorted or astigmatic view of the 
position of stars and planets (Wesley 1991a). To obtain 
accurate predictions based upon classical celestial 
mechanics observations should be corrected for this 
aberration. For example, an adequate prediction of the 
precession of the perihelion of Mercury requires this 
correction using a reasonably accurate value of the 
absolute velocity of the solar system. 

The present measurement sheds light upon the 
long-standing important question: What velocity 

should be used in the gamma factor, γ = −1 1 2 2v c ? 

This factor occurs in the Voigt-Doppler effect for light 
(Wesley 1980, 1983, 1986, 1987, 1991b) (usually 
inappropriately referred to as the “relativistic” Doppler 
effect) and in the mechanics of fast particles, where the 
momentum is p v= mγ , where m is the rest mass. The 
present results indicate experimentally for the first time 

that the velocity to be used in the γ factor is the absolute 
velocity. Ordinarily laboratory or relative velocities 
have been used in the γ factor. The justification for 
using such partial velocities should now be checked out 
by first introducing the complete absolute velocity. It 
may be shown, for example, that the constant absolute 
velocity of the laboratory (equal to that of the solar 
system of about 300 km/s) will ordinarily play no role. 

2.  Other determinations of the absolute 
velocity of the solar system 

Since an observer moving toward a source sees light 
Doppler shifted toward the violet and moving away sees 
a Doppler shift toward the red, de Vaucouleurs and 
Peters (1968) examined the red shifts of 204 galaxies 
within 75 Mps. Optimizing the isotropy they estimated 
the solar system to have the absolute velocity shown in 
Table 1 below. Similarly Rubin et al. (1976), 
considering a shell of 200 galaxies at a distance of 100 
Mps, obtained the estimate of the velocity also shown in 
Table 1. 

A more reliable estimate of the solar system velocity 
was obtained by Conklin (1969) by measuring the 
anisotropy of the 2.7 K cosmic thermal background 
radiation from the ground. Henry (1971), making 
observations from a balloon, obtained the best value to 
date using the 2.7 K anisotropy. Others, such as Smoot 
et al. (1977), have also made measurements using the 
2.7 K background anisotropy. 

Marinov (1974, 1977, 1980a), with a “coupled 
mirrors” device, determined the absolute velocity of the 
solar system from the anisotropy of the one-way speed 
of light c* observed in opposite directions, where 
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c c co
* ± = ± ⋅b g c v  where c is the velocity of light 

relative to absolute space and vo  is the absolute velocity 
of the laboratory or solar system. Marinov (1980b, 
1984) again determined the absolute velocity of the 
solar system from the anisotropy in the observed one-
way velocity of light using two toothed wheels on the 
ends of a rotating cylinder. Marinov’s “coupled 
mirrors” result is the most accurate measurement of the 
absolute velocity of the solar system to date. This simple 
elegant experiment can be repeated with improvements 
(Wesley 1991c) to obtain a still more accurate value. 

Still other practical methods are readily available to 
measure the absolute velocity of the solar system, such 
as comparing the interference intensities produced by 
oppositely directed beams passing through the one-way 
Sagnac device (Wesley 1991d), or by measuring 
terrestrial Bradley aberration from its effect on parallax 
(Wesley 1992). 

3.  Theory 

Muons are created high in the Earth’s atmosphere 
from the decay of pions with a minimum kinetic energy 
(Leighton 1959a) of 33.9 Mev. Muons decay rapidly 
with a half-life for stationary muons (Leighton 1959b) 
of τ o = × −2 22 10 6. s. The flux of muons at sea level is, 
thereby, reduced during the transit time from the point 
of creation of the muon to sea level. Considering the 
half-life τ o  and the time of flight of the muons, an 
excess of muons is observed at sea level. In particular, 
the half-life of a radioactive particle moving with the 
velocity v, as observed by Bailey et al. (1977), is given by 
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The γ factor in Equation (1) arises as a statistical 
mechanical effect in neomechanics, where p v= mγ  
and absolute space and time is assumed (Wesley 1991e). 
This effect, Equation (1), does not constitute evidence 
for “time dilation.” 

Assuming the muon velocity in the γ factor 
occurring in Equation (1) is the absolute velocity, then 

 v v v= ′ + o , (2) 

where ′v  is the muon velocity relative to the Earth and 
vo  is the absolute velocity of the Earth or solar system. 
The absolute velocity of the Earth is essentially the 
absolute velocity of the solar system of about 300 km/s, 
the Earth’s orbital velocity about the Sun being 30 km/s 
and its tangential velocity of rotation being only 0.5 
km/s. 

Since it is generally accepted that the γ factor in 
Equation (1) produces a large effect on the sea-level flux 
of muons, and the absolute velocity of the solar system 
vo  enters in through Equation (2), the absolute velocity 

of the solar system should produce a large effect on the 
observed sea-level muon flux. In particular, the muon 
flux should be a function of the direction, since v c2 2 , 
occurring in Equation (1) from Equation (2) yields 

 v v v v vo o o
2 2 2 2 2= ′ + + ⋅ ′ ≅ ′ ′ + ⋅v v n vb g , (3) 

where n is a unit vector in the direction of ′v  and 
where v o  has been neglected compared with the muon 
speed ′v , which for a muon of energy in excess of 33.9 
Mev is about the speed of light c. 

The magnitude and direction of the muon flux were 
measured with a cosmic ray telescope, as described 
below. 

The flux of muons generated at the altitude h in the 
range dh with the kinetic energy E in the range dE in 
the direction n, the direction of the cosmic ray 
telescope, is given by 

 
d

d d

2U
h E
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Due to radioactive decay in flight the flux at sea level is 
reduced by the factor 

 f
t

= −FHG
I
KJexp

τ
, (5) 

where t is the time to travel the distance from the source 
to the point of observation at sea level and where τ is the 
half-life given by Equation (1). In particular, 

 t h
v

=
cosθ

, (6) 

where h cosθ  is the slant distance from the source to 

the point of observation and θ is the zenith angle of the 
telescope. Since the cosmic ray telescope was arbitrarily 
chosen to lie in a meridian plane, the zenith angle θ 
equals the difference between the latitude of the 
observatory on the Earth δ = 47.206° north and the 
chosen declination δ of the telescope, or θ δ δ= − ′ . 

The time needed for the muon to proceed from the 
source to the sea level observer from Equation (6) is 
then 

 t
h

v
=

− ′cos δ δb g . (7) 

Combining Equations (7), (5), and (1), the decay factor 
becomes 

 f
h

vo

= −
− ′

RST
UVW

exp
cosτ γ δ δb g . (8) 

Multiplying Equations (4) and (8) for the sea-level 
flux S in the direction n (whose declination is δ), noting 
that the solid angle subtended at the telescope by the 
horizontal source element of thickness dh is 
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dhcos δ δ− ′b g , and integrating over all altitudes h and 

all energies E, yields 

 S h E f
U

h E
= − ′z zd d

d
d d

2

cos δ δb g . (9) 

To a first approximation these integrations may be 
evaluated by the mean value theorem for integrals to 
yield the sea-level muon flux in the direction n as 

 S fU= − ′cos δ δb g . (10) 

where f  and U  are computed from appropriately 
chosen mean values for h and v. 

Since for fast muons the kinetic energy E is given by 

 η γ= = −E
mc2

1, (11) 

the mean muon velocity in terms of the mean kinetic 
energy is given by 
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Since the absolute velocity of the solar system is known 
to be about 10–3 c, the absolute velocity of the muon is 
only slightly less than c, the absolute velocity of the 
solar system v o  may be regarded as a differential of the 
absolute velocity of the muon itself. Thus, from 
Equation (3) 

 dv vo o= ′ + − ′ = ⋅v v n v , (13) 

where ′v v~  and where n v~ v  is the direction of the 
muon and the telescope. 

The effect of the absolute velocity of the solar system 
on the sea-level muon flux may then be obtained by 
taking the differential of Equation (10). Thus, the 
difference between the flux S in the direction n and the 
muon flux S  averaged over all directions is then 

 ∆S S S S
v

v S
v o= − = = ⋅d

d
d d

d
n v . (14) 

Taking the derivative of Equation (10) with respect to v, 
the fractional difference becomes 
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Inverting Equation (15) then yields the desired 
velocity; thus, 

 n v⋅ = − ′o

c
K S

S
cos δ δb g∆ , (16) 

where K is given by 
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c

h
o

=
−τ γ

γ

2

3

1d i
, (17) 

where appropriate mean values must be chosen for h 
and γ. 

The peak ionization (Leighton 1959c) occurs 
around an altitude of about 16 km, where the incident 
primary protons and other nuclei generate the most 
pions and muons. Since most muons are created at 
about 16 km and few are created below, the mean 
effective value for h that is appropriate for evaluating the 
integral in Equation (9) may be taken as simply 

 h(mean) = 16 km. (18) 

The surviving muon flux at sea level may be attributed 
primarily to radioactive decay, the interaction of muons 
with matter being small. 

The kinetic energy (Leighton 1959a) given to a 
muon by a stationary pion is 33.9 Mev, so the 
minimum value of γ from Equation (11) is then 
γ(min) = 4

3 . There is no particular upper limit to the 
muon energy, but the number of muons with higher 
energies drops off rather rapidly with energy. For a 200 
Mev muon γ = 3. Assuming a reasonable kinetic 
energy appropriate for evaluating the integral in 
Equation (9) of E = 100 Mev, the mean value of y 
becomes 

 γ(mean) = 2. (19) 

Substituting Equations (18) and (19) into (17) yields 
the estimate 

 K = 0.016, (20) 

where a fractional uncertainty of 20 percent might be 
appropriate. The theoretical prediction from Equations 
(16) and (20) then becomes 

 n v⋅ = − ′o

c
S

S
0 016. cos δ δb g∆ . (21) 

4.  The Experiment 

The cosmic ray telescope consisted of two gamma-
ray sensitive (above about 40 KeV) Geiger-Müller 
counters (Philips Type 18503, cylinders of length 4 cm 
and radius 1.5 cm) aligned with their axes parallel to 
each other a perpendicular distance 53 cm apart. The 
axis of the telescope, the perpendicular through the 
center of the two counters, was mounted to lie in a 
meridian plane (a vertical north-south plane where α, 
the right ascension, is constant), such that the axes of 
the two counters were also in the meridian plane. From 
this geometry the acceptance angle in right ascension 
was ∆α  = 3.2° and in declination was ∆δ  = 8.8°. 

All values of the right ascension were attainable as 
the Earth rotated through 360° in a day. Different 
values of the declination were obtained by tilting the 
telescope with respect to the vertical (the zenith in the 
meridian plane with a declination of ′δ  = 47.2°, the 
latitude of the observatory in Freienbach, Switzerland). 
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Since about 80 percent of the cosmic ray particles 
observed at sea level (or at 420 m above sea level where 
the telescope was located) are muons, the cosmic ray 
telescope, being sensitive to such penetrating ionizing 
particles, registered counts proportional to the muon 
flux in the direction of the telescope. Moreover, the 
knock-on electrons and gamma rays, as well as the 
decay electrons of more than 100 Mev, proceeding in 
the same general direction as the original muons 
themselves, also contribute to the effective telescope 
counts. Since only the directional variation in the 
muon flux is needed and not the absolute magnitude of 
the flux, as indicated by Equation (21), results were 
essentially independent of the sensitivity of the Geiger-
Müller counters used. 

The Geiger-Müller counters registered a 
background count due to radioactivity in the air, earth, 
laboratory walls, equipment, and the counters 
themselves. This background can lead to false 
coincidence counts between the two counters in the 
cosmic ray telescope. These background coincidences, 
which are independent of the celestial direction, must 
be subtracted from the observed coincidences to obtain 
the true signal desired. Hills to the south of the 
observatory blocked a view of the open sky at angles 
close to the horizontal, 5°, making a direct 
measurement of this accidental background possible 
without having to alter any of the other parameters of 
the setup. A mean background of 1.8 coincidences/day 
was measured, 15 percent of the maximum observed 
signal, or 20 percent of the maximum true signal. 
Considering the recovery time between counts of the 
Geiger-Müller counters of about 200 µs and the 
coincidence window of the electronic setup of about 260 
µs such an accidental coincident rate would be expected 
if each unshielded counter registered about 9 accidental 
counts/min, which is in reasonable agreement with the 
manufacturer’s 10 counts/min for a shielded counter. 

Considering the acceptance angles of the telescope 
( ∆δ  = 3.2° and ∆δ  = 8.8°), measurements were made 
every 6 degrees in right ascension (60 values) and in 
declination (22 values). Data covering the whole sky 
was accumulated over an 18 year period involving 3600 
days and a total of 32,369 coincident counts. The 
recording of the data and the motion of the telescope 
were automated. Little human intervention was 
required. 

5.  Computations 

For a particular telescope direction of right ascension 
α α= i  and declination δ δ= j  where the absolute 

velocity of the solar system vo  is in the direction α o , 
δ o  and the declination of the observatory is ′δ , 
Equation (21) becomes 

V Xi o o j o j ijcos cos cos sin sinα α δ δ δ δ− + =b g , (22) 

where 

 V v
cK

o=  and X
S

Sij
j ij

=
− ′cos δ δc h∆

, (23) 

where ∆S S Sij i j= −α δ,c h  and K is defined by 

Equations (17) and (20). 
It is convenient to divide the data into two groups, 

α i  and ′α i , one for 0 ≤ ≤α πi  and the other for 
π α α π π≤ ′ = + ≤i i 2 , to form the sum and difference 
defined as follows: 
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Similarly it is convenient to divide the data into two 
groups, ′′α i  and ′′′α i , one for − ≤ ′′=π α2 i  
α π πi − ≤2 2  and the other for π α2 ≤ ′′′=i  
α π πi + ≤2 3 2 , where again 0 ≤ ≤α πi , and to form 
the difference defined by 
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From Equations (24) and (25), α i  may be 
eliminated and the following average quantities formed: 
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where the summations are taken over the M values of 
α i  equal to one half the total number of values over 
360°. 

A value of the absolute velocity of the solar system 
vo  may be obtained from Equations (26) for each value 
of δ j  (except δ πj = 2 ), thus, 
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where the signs of the square roots in Equation (27) are 
to be taken as positive. When Pj is positive, δ o jb g  is 

directed north; and when Pj is negative, δ o jb g  is 

directed south. The quadrant in which α o jb g  lies is 

given as follows: 
 first quadrant: Qj plus and Rj plus, 
 second quadrant: Qj minus and Rj plus, (28) 
 third quadrant: Qj minus and Rj minus, 
 fourth quadrant: Qj plus and Rj minus. 

The final experimental values for v o , α o , and δ o  
were obtained as the average of the j values weighted 
according to the fraction of the data available for each j. 
The experimental error was calculated as the standard 
deviation correspondingly weighted. The results are 
presented in Table 1. 

6.  Conclusions and Discussion 

The absolute velocity of the solar system measured 
using the anisotropy of the cosmic-ray muon flux is 
presented in Table 1. The error involved is rather large. 
Yet the anisotropy, while broad, is quite real, and the 
mean value observed agrees with measurements using 
other methods. The present results thus serve to 
confirm the value of the absolute velocity of the solar 
system obtained by other (more accurate) methods. 

The present result demonstrates empirically for the 
first time the fact that the appropriate particle velocity to 

be used in the γ factor, γ = −1 1 2 2v c , is the absolute 

velocity of the particle. 
Results might be improved by eliminating more of 

the background coincidences by using an improved 

cosmic ray telescope. An appropriate array of Geiger-
Müller counters registering muon produced cosmic ray 
“showers” might serve the purpose. 

A large uncertainty exists in the estimate of the value 
of K, defined by Equations (17) and (20), which 
produces a corresponding uncertainty in the reported 
magnitude of the absolute velocity of the solar system 
v o , as indicated by the first of Equations (27). The 
reported direction, α o  and δ o , is independent of this 
uncertainty. A more detailed analysis of the various 
processes involving muons in the atmosphere should be 
able to reduce this uncertainty. 
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Table 1. Absolute velocity of the solar system 

method observer year vo km/s ααo hour δδo deg 

galactic de Vaucouleurs 
red and Peters 1968 300 ± 50 7 ± 1 50 ± 10 
shifts Rubin et al. 1976 600 ± 100 2 ± 2 50 ± 20 
2.7 K Conklin 
cosmic (ground) 1969 200 ± 100 13 ± 2 30 ± 30 
back- Henry 
ground (balloon) 1971 320 ± 80 10 ± 4 –30 ± 25 
 Smoot et al. 
 (airplane) 1977 390 ± 60 11.0 ± 0.5 5110 
one-way Marinov 
light (coupled 
velocity mirrors) 1974 300 ± 20 13.3 ± 0.3 –20 ± 4 
 (toothed 
 wheels) 1984 360 ± 40 12 ± 1 –24 ± 7 
muon Monstein 
flux and Wesley 1995 359 ± 180 8.7 ± 3.5 –1.1 ± 10.0 

 


