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‘Theory of Electromagnetic Field from a High-Altitude Shot
James Paul Wesley ,
Lawrence Radiation Laboratory, University of Califofniq,A

Livermore, California

ABSTRACT
The present investigation concerns the theoretical derivation of the

altitude effect electromagnetic field produced by a nuclear bomb explosion.

The electric polarization wave, which is produced by gamma rays from the bomb
knoéking Compton electrons radially éutward from the bomb, progresses through
the air where the density varies with altitude. The variation of the air
density with altitude causes the electric polarization wave to be nopsphericélly

symmetrical and to be the source of a large electromagnetic field - the altitude

effect. There is a brief discussion of the physical mechanisms that establish

A

the polarization wave, And there is an approximate derivation of the two
physical parameters of interest: the electric polarization‘sourcé strenéth, A,
and the‘reciprocul effective mean frge path of gamma rays in air%pq .

The theoretically deri?ed ele;tric polarization wave source is subst1£uted
into Maxwell's equations. By introducing\a scalar, y , Maxwell's equations
redgce to a single inhomogeneous scalar wave equation. Applying Green's
theorem the scalar y and consequently the electric and msgnetic field componentﬁ
are expressed in the form of ﬁriple integrals over a spheroidal volume which
grows in time. These integrals are presented in forms suitable for numerical

integration; however, no numerical results are presented. After the passage

of the polarization wave the static chérge distribution produces a static
electric field. This static electric field is expressed in the form of double

integrals which involve the complete elliptic integrals.
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Theory of Electromagnetic Field From a High-Altitude Shote
James Paul Wesley
Lawrence Radiation Laboratory, University of California

Livermore, California

-1.. INTRODUCTION

This paper is incomplete in the sense that the humeriéal integrations
yielding the electric and magnetic field components as functions of tiﬁe are
not included. But since it may. be some time, 1if éver,‘before the difficult
and arduous numerical work is completed, and siﬁce the work ‘accomplished thus
far is of value, it was decided to present the material without the final
nuncrical results.. Whenever the numerical integrations are completed a
supplementary report will.be issued. |

This study is primarily concgrned with obtaining an order-of—magn;tude
estimate of the electromagnetic<field§ to be expected from a high-altitude

nuclear bomd explosion; and it is not intended to be complete analysis.

-Gamma reys which are emitted by a nuclear bomb exploslion displace Compton'

electrons radially outward from the bomb. This process produces an electric
polarization wave which.travels‘radially outward from the bomb with the velocity
of iight. If né nonspherical features are present, only a small radial

electric field qorresponding to the emf of the process will.be observed.

However, if the electric polarization wave becomes noaspherical, very large

electromagnetic fields result. The spherical symmetry is disturbed if the’

earth interrupts the polarization wave. The large fields that result are

attributed to the boundary effect which 18 treated in another paper (Wes;ey,

ref. 8). The spherical symmetry is dlso destroyed if the polarizatioh wavé

o
on
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travels through the air where the densitY'changes with altitude. This altitude

: Y : ‘ .
effect is treated in the'present paper. The altitude effect in the presence

- of a bounding"éarth may also be treated; but has been reserved for future

‘investigation. Heré we are involved with the pure altitude effect involving

no boundéries, as-is appropriate for a high-altitude shot.

2. SOURCE /

The detailed analysis of all of the processes from the initial emission
of gamma rays from the bomb to the final production of an electromagnetic field
by the Compton electrons is extremely difficult. The present analysis must,
therefore, fély in part upon some averégé parameters, approximations, intuitioﬁ, )
and guess work. |

.2a. JInitial Gamma Rays

The gamma rays initially emitted by the bomb are emitted according to some
distribution in time, energy, and direction.- Here we assume for mathematical‘
convenience that_éll of.the gamma rays have the same energy yhich is.chosep té
be é Mev; Because af'the'lafge times involved we are justified in assuming |
lthat the gamma réys ére.émittéd as a delta function burst in iime which.thgh

proceed radially outward with the velocity of light. c,

5 (ct-r) , - (2.1)

where t is the time and r is the radial distance from the center of the bomb,

r2 = p2 + lZ - hl2 5 . (2.2)

wvhere p is the cylindrical radial distance, z -the height of the observer, and
h the height of the bomb.
We also assume that the bomb is spherically symmetrical and that the gamma

rays are emitted spherically unifprmly. The oniy assumption likely to produce

serious difficulty is the assumption of monoenergetic gamma rays.
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2b. Attenuation of Gamma RaySgA
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\

Only the @omponeht of theigamma rays moving radially outward from'thé
bomb is assumed to be effective in produéing a charge separation, and therefore
an electromagnetic signal. Tangential compohgnts,of the gamma rays being

equivalent in-all tangential directions will produce ionization but no net

charge separation. Thus, the attenuation of gamma rays in space and time of

interest here will not be the distribution functions so carefully worked out
for gamma ray dosage.

In particular, assuming no captufé or attenuation, the number dfvgammé

rays, n, passing through a unit area on the surface of a sphere of radius r

about the bomb is,
n = /b (2.3)

where N is the total number of gamma rays emitted by the bomb. The number
absérbed per unit volume of air is proportional to the density of the air,
the effective mass cross section, and to the total number of gamma rays passing

through a unit area, n,
1 93,2
— 57 (rm) = -pn, ' (2.4)
r

where B is the effective mass cross section times the density.
Since the density of the air, u, varies with height, z, we assume the
functional form-

: -kz - . : ,
w=nle T, : (2.5)
where pé is the density of air at sea level and k is the reciprocal scale

heightﬁ. Thean becomes

: B=5 ¢ . (2.6)

gop 0T
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Substituting Eq. (2.6)into (2.4), letting |
z = h+ 1 cos 0, : ' (2.7)

and integrating with respect to r, we obtain

-kz 4
2 , e
1n (I’ I'l) = BO r m)‘ + C(e) . . (2.8)
The function of 6, C(Q), may be determined by requiring that for 6 = n/2
2 . _-kh N
1n (rn) = Blr e + 1n Tx where 6 = /2. (2.9)
Thus,
» LK .
c(e) = - Bo k cos,e-lp Ly ' (2.10)
‘ kh -

and Eq. (2.8) yields,

N 1 R o -
n = In 2 exp |- 5(;1‘ ﬂ-_h)_ . (2-.1.].)
re . -
If we include the variation with time as.specifiéd by the delta function,
Eq. (2.1), we‘obtain the appropriate approximate diStriﬁution function for

the gamma rays in spacé and time.

N 1 e-kh—e_kz
n = I s} (C’t‘,—I‘) ;2- exp | - Bc')r m)-—' . (212)

This result'may be easily generalized £o include the presence of"a;layef which
is either opaque to eiectrqmagnetic fields, such as an ionized layep of atmos-
phere, or which absorbs the gammé rays, such as the surface of the earth;-by
inciuding the steb function factor,

1 for z > O,
s(z) = (2.13)

0 for z < O.‘
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2c. »Initial Elecﬁfons
k The nﬁmber éf Comptop electrpns genera£ed as é function of time and space
is assumed‘tp be proportional to the humher of gamma rays aﬁsorbéd; or thg right
side of Eq. (2.4) where Eq. (2 12) gives the value of n. )
" In detal; a gamma ray of energy E = hv gives up its momentum hv/c to a
number of eleétronS'and atoms. Assuming the momentum transferred to apoms is

negligible we have

n'

}: v, cos a, ik W (2.14)
HeR)

~where m, is the electrons rest mass, Vs is the speed of the ith electron and

nﬂw ro

¢]

-

ai is the angle the velocity vector of the ith electron makes with respect
to the original radial direction of the gamma ray.

The gamma ray also shares its original energy among the same electrons
and atoms. If we assume that the amount of energy transferred to the atoms

is also negligible, we have from conservation of energy,

-n' s . 2 - _é' ‘ . . .
2 i\ . :
_I‘?V = moc Z <l -— 0_2 -1 ' (2.1‘5)
' i=1 .

It is trﬁe that the initial points at which the n' elecfréns are generated
‘by_ﬁhe multiple scaﬁtering of the gamma ray may be very'widely separated in
spaée. Due to the spherical geometry there‘will, thus, be a tendency for é
larger number of less energetic Compton electrons to be produced further from
the bomb. It is also true that the gamma ray which has been scé&tered with a
tangential component will no longer haﬁé as large a radiél component of |

W .

velocity; wé-may, thus,lexpect straggling in time. Despite fhe actual presence

of these phenomena to alter the space and time dlstribution of the initial

Compton electrons, we will assume that we have a time and. spacgr? strlbqyipn

b.

oA
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as given by the right side of Eq. (2.4) and Eq. (é;l2). Later we wili
introduce a term which permiﬁs some étraggling in time if}espectivé of the
cause of the straggling. The geometrical effect is assumed to.be zero inso-
far as the final electromagnetic field is concerned, since less energetic
electrons p;oduce less of an effect.

2d. Attenuation of Electrons

Each of the n' Compton eléétrons moves through spéce, 1osing momentum
and energy by colliding with electrons and by producing bremsstrahlung, until
it finally becomes attached to an atom and produces a negative ion.

Since we are intérested in this procesé as an electromagnetic source we
afe interested in only two questiohs:‘(l)'What is ﬁhe.net.cﬁafge separation?
and (2) What is the éime to produce such a'net charge separation§ Ignoring
the detailed processes we assume each Compton electron is displaced from its
original atom (left positive) by a distance equal to\thé range of the electron.
in air.

The number 6f electrons surviving after passing through Fhe disténce X

is given approximately by,

n =n e-X/X s (2.16)
e o

" where )\ is the mean effective range which is a function of the- air density,
A=Al e (2.17)

and is a function of the energy of the Compton electron.

2e. Polarization Wave

The prescribed polarizafion produced by the Compton electrons and

cascaded electrons is the electric dipole moment per-unit volume or is the

sum
Q
-3 . -> .
P = =- 62 I‘i ;) ‘ . (2-18)
i=1
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where nO is'the total number of electrons per unit volume which .is proportional
to the number of gamma rays absorbed per unit volume as specified by Eq. (2.12)
and the right side of Eq. (2.4),e is the electron charge,-and ;i is thé dis-
Aplacement of the electron from the'pOSitiyé ion left.behind. The displacement
;i starts abruptly in time when a gamma ray strikes the electron and is then
assumed ﬁo-change uniformly with time.

In particular, we assume that the summation in Eq. (2.18) can be repre-

sented by a survival distribution of electrons as given by Eq. (2.16)

. P=-e Z;nox (1 - e/ , (2.19)

where g} is the unit vectar in the radial direction. Only the radial component
of E survives, since all other directions of motion for the electrons produce

- no net charge separation. Since we are assuming that the polarization remains
indefinitely once the electrons have become attached, we have used the function
(1 - e-x/k) in Eq. (2.19) instead of e-X/K. The distance x appearing in Eq.

(2.19) is assumed to be radial and to be varying uniformly with time,
X=vt , | (2.20)

where v is a mean effective velocity in the x direction. The time to is

measured from the moment the Compton electron is produced; thus,

t, =t -r/c, (2.21)

where r is measured from the center of the bomb.
Making the substitutions (2.20) and (2.21) in Eq. (2.19), we have the

polarization wave,

P=-ecnexrs (ctr), (2.22)
. ro .
where
"0 for ct-r < 0,
S(et-r) = : (2.23)
1 -9t ) g cter s 0,
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where we have introduced the single parameter
o = v/ex . : (2.24)
Substituting in the variation of A with height, Eq. (2.17), we obtain

o = oée Sy

where

o, v/cké . A (2.25)

When A = 0 or 0 = =, S(ct-r) goes over to the step function S(ct-r) as it

should (see Fig. 1).

Fig. 1

Pictorial representation of the functions S(to) and D(to).

92 = 12
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Since n, is proportional to the number of gamma rays absofbed, we have

n = A'n, | (2.26)

where n is given by Eq. (2.12), neglecting the delta function. Substituting
Egs. (2.26) and (2.12) without the delta function into Eq. (2.22), we obtain

' e 7T :
P=-eAh S(ct-r) -l (2.27)

where S(ct-r) is defined by Eq. (2.23), 7 is a function of z defined by

e—kh_e~kz ,
7= Bo k (z-h) °’ (2.28)
and A is not a function of z,
N .
A =g e\ B! - ‘ (2.29)

© We may simplify Eq. (2.28) for y by letting B, be the reciprocal mean free

' path of the gamma rays at the altitude h,

B =8 e, - (2.30)

2, =2 -h; _ ’ (2.31)
thus, .
_ ez,
y = B, T (@32)
) )
. 17
632 -
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L. " CURRENT AND CHARGE DENSITIES
The current and charge densities are related to the polarization such as

to satisfy the equation of continuity (stratton, ref. 7),
J ¥ B (k.1)
J=5¢ p¥ = - . .

W&, Current Density

From the first of Egs. (4.1) and Eq. (2.27) we obtain

J = g; Ac D(ct-r) e-7r/r2 , ' (4.2)

where y is a function of z defined by Eq. (2.28), A is defined by Eq. (2.29)
and D(ct-r) is defined by,

0 for ct-r < 0,

D(ct-r) = (4.3)

oe_G(Ct_r) for ct-r > 0 ,

where ¢ is a function of z defined by Eqs. (2.24) and (2.25). The function

D(ct-r) becomes the Dirac delta function when o = ®, as it should. It 'ig
‘pictured in Fig. L.
We may check that 3 is the flow of compton electrons by combining

Egs. (4.3) with (2.24) to obtain the coefficient

- | (I\Ii;eA)[;%}v , (k1)
Qhe;e-ﬁ, the reciprocal mean free path of the gamma rays, is a function of z.
‘Thus, we have the total number of.Compton electrons divided by the volume in
which they are created times the mean effective velocity of the electrons,
which is the appropriate measure of the current density.
The curregt produced by the Comptoﬁ electrons is a spherical shell of
radially diéecteq current which proceeds outward with the velocity ot light.

Although the current is radially directed the magnitude is a function of z.

92 14
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4b. Charge Density

From Eq. (2.27) for P it is apparent that the assumption of a point source
yields an infinite discontinuity at r = 0. This discontinuity only causes
trouble when considering the chargeidistribution. We, therefore, include the
step function,o(f—ro) as a factor that makes the pdlarization zero inside a
. sphere of radius ry which may be thought of as the radius of-the bomb. To
reduce this factor to unity we merely let r, - 0.

Noting that
.22 ,zh "
e = -e + e, | | (4.5)

p z

we obtain the charge density

2 v
19 o -rr d z-h \_=YT
* = = - - 221 - -
p S 5 A r3,4(r ro) S(ct-r)e + 57 |A rB‘A(r ro) $(ct r)e .
(4.6)
Using the derivatives
S L
6; = k) »
(zn) L2 -y 48 | (4.7)
dz ’ .
as obtained from Eqs. (2.17) and (2.28) where B, the reciprocal mean free
path of the gamma rays, is a function of z as given by Eq. (2.6), we obtain
‘ e 7T | S(r—ro) ' ct-r
* = - - - - - - -
o A (r ro) = B -3 =5 S(ct-r) + ; + g(z h) = | D(ct-r){ ,
' (4.8)"

where S(ct-r) is defined Ey Eq.'(2.23)T b(ct—r) by ﬁq;‘(h.ji, 7,by_Eq..(2.28)5

B by Eq.,(é.é), and \ by Eq. (2.17). '
In addition to the transient charge separation indicated by D(ct-r), there

is a permanent charge separation that remains-aftef the passage of the'polari-

zation wave, which becomes

692 10
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p* = A S 5 [S(I‘-ro) = BA(r-ro) ] | for t = o« . (4.9)

This charge distribution is not spherically symmetrical since ¥ and B are
functioné of z. The charge distribution consists of a positive charge onrthe
bomb with an equivalent amount of negative charge distributed in space. The
net charga is zero since p* 1s obtained as the divergence of a vector whose

normal component vanishes on thé‘sphere at infinity.-'

5. SCALAR SOLUTION OF MAXWELL'S EQUATIONS
.ngwell;s:equations for free space (air) in rationalized mks units may

be written

(1) Av4 x'-f:‘# %’E:‘ 0, | - (111) \/ * B - 0, \
- ' ' : (5.1)
) v xE-L &7 (IV) <7 - B = p*/e

V ox —.’ o2 3t T “O ) V =P o’

O . -
where the prescribed sources J and p* are given by Egs. (4.2) and (4.8) for

the present problem.

58. Derivation of the Differential Equation

Due to the complete cylindrical symmetry of source equations (4.2) and
(4.8) and the fact that we consider no boundaries, we may introduce a scalar
" .function ¥ such that

19

B = 02 X e(p (5.2)
Substituting Eq. (5.2) in the second Maxwell equation (5.1), we obtain
l a -+ g -
—C—QE(VX\VGQ-E)—HOJ- (5.3)

Substituting the first of Eqs. (4.1) into (5.3) and integrating with respect

to time; we obtain
- d
E=Vx\yecp-P/e ’ (5.4)

g92 1B
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.‘wﬁere Qe'ﬂave set'fhe arbitfary function of position.equal to zeroiin drdér
“to simultaneously sétisfy the second of Eqé. (4.1) and the four£h Maxwell
fféguéfion (5.1). It may be noted that Eq. (5.2) satisfies the third Maxwell
‘equation (5.1)

. Substituting Egs. (5.4) and (5.2) into the firs-t Maxwell equation (5.1)

we obtain the desired differential equation for v,

) . 12 . N
. - L_a_‘l’._' . -
V‘Vf“"ecpJ'ca S Sy =V x P/ec> . (5.5)

The source term may be obtained from Egs. (2.26), (&.5), and (%.7),

()

P > A pet . r
Vo= €0 F 5 [k(ct-r) D(ct-r) + = (B-y) S(ct-r)] . (5.6)

o o r

m

Writing out the ‘operator in Eq. (5.5) we finally have,

32
e - Ly ¥

1
"R Vt32 T 232
PP oz cc 3t

I+
g/‘O/

(5.7)
€ > |

_ - _A e v [k(ét-r) Dtct-r) + E§E (8-7) S(ct-r)] ,
o .

o

where S{ct-r) is defined by Eq. (2.23), D(ct-r) by Eq. (4.3), 7 by Eq. (2.28),
B by Eq. (2.6), and \» by Eq. (2.17).

5b. Boundary Conditions

Since the present investigation is for free space insofar as the electro-
magnetic field is concerned, we need only specify that the field and all of

its derivatives:vénish on the sphere at infinity.

6. DERIVATION OF y AS AN INTEGRAL
We may construct an integral expression for ¢ by usiné Green's theorem.

Taking a time transform of Eq. (5.7) we have

AR T TN S N | (6.1)

}_,‘\.
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where F is the transform of the source and where

]

[+ ] "g
Q‘f’elT‘Vdr, -
-00 .
' (6.2)
. “w .
1 -il1
¥ = on © e ¢ g ag,
-00
where 7 is the time in units of 1l/c ,
T = ct (6'5)
It has been assumed that
T = 4
9 elgy -0 )
T T = -0
(6.4)
¥ 187 =0 '
T = 00

* 68, Green's Theorem

We apply Green's theorem to which satisfies Eq. (6.1) and to the free

space Green's function, G, defined by

. ' . ! : . '
7% - L+ t% - 25 (z-zr) Aeel) (6.5)
p2 ) P .

where G is not & function of the cylindrical angle variable, @. Thué,

5540l

all space

=fda[wg%-c;%¥]‘;»w=o. (6.6)
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Substituting Egs. (6.5) and (6.1) into Eq. (6.6) we obtain,

ORI R (6.7)

all space

6b. Derivation of the Source Transform

We must now evaluate F, the time transform of the source, or, in bartiqular,

we must evaluate the time transform of the right side of Eq. (5.7). From
Egs. (2.23) and (4.3) we may obtain, *

f-w eigf‘S(T-r) dt = eicr l:- 'i% + ']ﬁxc-]: “
. (6.8)

re. it v ei;r‘
_JF-’ e (t-r) D(7-r) d1 = v T3
- S (ig-v/xe)
where it is assumed that Im {{} > O. Combining the right side of Eq. (5.7)

with Eq. (6.8) we obtain the source transform

_ A -yr _ifr | kv -1 r _ o1 1
T % 53 ° {;c (1¢-v/xc)? " zm B [ g " ig'V;XCI;’.
(6.9)

6¢ . “Derivation of the Green's Function

In order to obtain the free space Green's function satisfying Eq. (6.5), we

note that the usual free space Green's function (Morse and Feshbach, ref. 5).15

H(ET) = & BR (6.10)
which satisfies the differential equation,
 + )&= —bns F3) (6.11)
where

R® - p2 + p'2 - 2pp' cos (p=@') + |z'-z|2 . - (6.12)

ga2 19
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Multiplying Eq. (6.11) by cos (¢4$').and integrating with respect.§6 @ from -x

to +x, noting that

'

2 ' |
f-ncos .(q)—cp')glg'-a—a-;gdq)=‘——% /ncos a,ﬁda, (6.13)

n P -N
where

a=9-9', (6.14)

we readily see that the solution to Eq. (6.5) is

1 T eicR'
G=Zj:ndacosa — | (6.15)

6d, Integral for V¥

Substituting Eqs. (6.15) and (6.9) into Eq. (6.7) we obtain the .ti‘ansfo:g'-m
function in integral form,

: . ) . B ‘ R
v = —2 av docos @ S B e MT G L
2 R 3 AC 4.
8n €, all space VY -x , .

C ' ll S
. f E%H (?-7) [-‘IE * it=v/ac ]} :

Integrating with respect to @ and taking the inverse time transform we have

the result
A ® * " pcosa e’
vt e = pa [ e [Tw
"€ Jo - el -x R r2
o (6.17)
X[k(ct—r—R) D(ct-r-R) + erh (B-7) s(ct-r-R)] ,
wheré R is, gi&en by
R® - p2 + p'2 - 2pp' cos A + |z'-z|2 s (6.18)

and where r is defined by Eq. (2.2), S(ct-r-R) by Eq. (2.23), D(ct-r-R) by

Eq.. (4.3), 7 by Eq. (2.28), B by Eq. (2.6) and » by Eq. (2.17).

gg2 2
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7.  REGION OF INTEGRATION
- Sinceﬂboth‘D(¢t¥f-R)'and S(ct-r-R) appearing in Eq. (6.17) are zero for -

.et-r-R < 0, the region of integration is bounded by the surfade given by
T-r-R=0, ' (7.1)

where 1 = ct, as before. The surface which is defined by Eq. (7.1) is an
allipsoid of revolution with the bomb at one foci and the ébserver at the other.
An ellipsoid of revolution may be defined as that surface for which the sum

of the distances from the foci or two fixed points.to a point on the surface is
a constant;—the constant is T in the present case.

We, thus, introduce prolate spheroidal coordinates by letting

r= %.r' (¢+n) ,

(7-2)
R=3r' (6-n)
= 2 : n s
where |
2% = 0% 4 (20n) (7.3)
In particular, if
X=pcosQ y=p siﬁ a, (7-%)
then
. 2 2y
2 x = p'(140) - (2'-h) sin w A/(£5-1)(1-17) ,
2y=r'cosw YE21)QNT) , - (7.5)
2 (z-h) = (z'-h) (1+80) + p' sinw (s%-1) (1-n7) .

The primed coordinates are the coordinates of the observer and are, therefofe,

constant with respect Lo Lhe inlegration, Eg.' (6.17). The equation of the



.'22-"_ : : ' UCRL-5157

ellipsoid of revolution, Eg. (7.1), becomes simply from Egs. (7.2)
£ = 1/r' . . (7.6)

To transform the integral given by Eq. (6.17) to prolate spheroidal

coordinatés, we note that the element of volume is-given by

av = 37 (£°0°) at anaw . | C(7.7)

Before tranéforming to prolate spheroidal coordinates we break-up ¢ -

into two parts in order to simplify our expressions,

= (I, - 1) (7.8)
o}
where
-rr
X e
Il =\jp av 7 r2 fl P
all . )
space e
P (7:9)
_)lr
X e
12 —b/j av 1 r2 f2 3
all
space
where
7-r-R '
fl = k X D(r-r-R) 5

(7.10)

7
£, = 2B s(trR) .

Substituting Eqs. (7.2), (7.%), and (7.5) into Egs, (7.9) and (7.10), noting .
that the contribution from the region n/2 < w < 3n/2 equals the contribution

from the region -n/2 < w < n/2 since the integrand involves only sin w, we have
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/2 1 o yr(ten)/e .
I=f dw'j dT]f"dié 2Xe_———"—fi‘)

1 , £+1
-1/2 -1 1 A :
' (7-11)
n/2 1 st  o-7r(E+n)/2 |
12 =f dw f an f - dg 2X T— f2 »
' -r/2 .—1 1
where
. k T, .
fl =2 E—‘"-;]- (; - &) D(7-rg) ,
(7.12)
7-B _
f2 = 5 S(T-I‘E) )

where we have dropped the primes and have replaced x by X and z-h by Z in
order not to confuse these variables with the point of observation, (z,p) .

Collecting other formulas for convenience, we have

L .
2X.= p(1+n) - (z-n) sin w (£5-1)(1-7°) ,
. 2 2 .
22 = p sin w A(£°-1)(1-77) + (z-h)(1+n) ,
-KZ
7 = BO l—iz p)
(7.23)
B =8, e
D(t-rt) oe"0(7-TE) s ,
s(r-rt) = 1 - ¢ (T TE)
-XZ
0=0_¢e ,
(o]

whére Bo is the reciprocal mean free path of the gamma rays at the height h,
where o, is the apparent effective reciprocal mean free path of the electrons
at the height h, and where we need no longer specify that D(Tfrg) and S(T-rg)

.

are zero for 1 < rt.
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8. INTEGRAL EXPRESSIONS FOR THE ‘FIELD

The electric and magnetic fields may be obtained by differentiating ¥

as given by Egs. (7.8), (7

and (5:2).

.11), (7-12), and (7.13) according to Egs. (5.4)

8a. Integral Expression for the Magnetic Field

Taking the time derivation of y, Egs. (7.8), (7.11), (7.12), and (7.13),

according to Eq. (5.2), noting that the integrand is zero for & = 1/r, we have

: dr, a1, | - - ‘
A 1 2 .
Bo - hneoc [BT B BTA} 2 : K '(8'1)

Z

where
axl vrt/2 1 T/r e-7r(§+n)/2 of;
St =f dw f an f ag 2Xx £+ 0 ST
-n/2 -1 1
(8.2)
oI, n/2 1 1/r | efyr(g+n)/2 ale
8}—:f aw dnf aE  2x el
-n/2 -1 1 :
where
3f |
-2 [F- e pe)
3 (8.3)
f
. 92 -
5 =5 p(ere)
8b. Integral Expfessioh for the Electric Field
Using Eq. (5.4) where P is given by Eq. (2.27) we obtain,
e A e 71T
E= - 5% + E; S(ct-r)p =
E¢ =0, (8.4).
13 A o) e 71"
E == — S{(ct- -h —— .
535 (P¥) + o (f r) (z-h) %

N

62 - 24
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The subscript 1 beiné placed on the 'y to distinguish this 7, from the y used
in the integrand, Eq. (7.9). To evaluate the z derivative appearing in the
first of Eqs. (8.4) and to get the radial component of the electric field we

use Egs. (7.8), (7-11), (7.12), and. (7-13) to obtain

o1 oI

oy _ A 1l - 2
dz hne, 1oz ~ oz |’ , (8.5)
where
'BIl n/2 1 T/r e-yr(§+n)/2 [ 1 Bfl-
$=f dwf dnf dg @(Tfl hz+f-]—-a?—,
-n/2 -1 1 - J.
o (8.6)
S dr, . pe 1 tr Jorr(sen)/2 T 1 95,
y =f - dw f an f dg 2X ——T f2 h f— Sz |
' -n/2 -1 1 = -

where again the derivative'of the upper limit is zero since fl and f2 vanish

for £ = T/r, and where

L 2. 2
b, 1ﬁ % (2% gmz 3 (ye) - - sinw NE2)Grd)
(8.7)
- 55% (€+n) 7 + r(&+n) (1+&n) an
and from Egs. (7.12) we obtain,
1% ¢t oz 1
i s T TaE oz cor tEk (wem[(1 - ote- xog))]
| ' ' (8.8)
19 1en 1. z-h 1 D - rf)
T - ey (s[5 -  ne r Geen)] G

We may similarly obtain the z component of the electric field by using

Egs. (7.8), (7.11), (7.12), and (7.13) to evaluate the derivative appearing
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in the last of'Eas. (8.4); thus,

%%(w) - E S e - E e R] )

where

ol o
Q/

3]
—
©
H

(-]
~—
"

w2 1 ) e7rlesn)/2 o, of)
Jloe o) Ta atmm— a2
Tan/2 e A |

o R} o
(0%
31
~_
ko)
—
no
~
1]

-n/2 -1 1

where

2 % B : (8.11)

+ % &%&n % (+n) 7 + x S (6+n) sin w \/(geél)(l-qe)',_

and from Egs. (7.12) we obtain,

ar .
i _1. P +80¢ - Lk sinw \/( 2 2
- - -3 £°-1)(1-n7)  (14rog)
fl dp rE(T-gr) r 2 ) . : )
af
1 2 B 1
g i - sln W ‘\/(g -1)(1-q ) [ k yB - z] . (8.12)

+§g%%§—§%[ krsmw’\/l-l)(ln) ]

The electric field in integral form may, thus, be obtained as the indicated

combinations of the equations of this seclion.

~
-

72l p/r Lrr(een)/2 | 9%,
[ra [T [T e et gy o

692 26
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9. EXPRESSIONS'fOR COMPUTATION
Since the present work is a preliminary investigation, there has been
no attempt to 6btain analypical results. Instead a few cases will be sampled
by numeficai"ihtegration. |

_There are six fundamental physical parameters,

(9:1)

where p is the horizontal distance of the observer from the position of the

bomb, z. is the vertical position of thé observer as measured from the position

1
.of the bomb,

z, =z-h , . 1 L (9.2)"
T is the‘timé'ip units of 1/c

T=ct k] . ’ (9'5)

BO is the‘reciprocal mean free path of the gamma rays at the height h above
sea level, 9% is the apparent effective reciprocal mean free path of the

Compton electrons at the height h above sea level,
0, = v/eh, (9-4)

"where A, is defined by Eq. (3.5), and k is the reciprocal scale height of
the earth's atmosphere.

9a. Expression for

From Egs. (7.8), (7-11), (7.12), and (7.13) we may write

bre

gae 2T
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where

. n/2 x cosh™ta o o _
11’2 =\jp aw \/ﬂ dv u/‘ _du | Gfl,a v o __(9.6)
-n/2 0 0 o S
where .we have introduced new variables of integration u and v such that

1 & = cosh u, n=cos v , (9.7) .

in order to keep the integrand finite everywhere. The constant (with respect

to the integration), a, is

a=1/r . » (9.8)
The function G which is common to both Il and 12 is given by -
\/,.-1 1- - ‘
¢ - MEDAN) o g , 0 (9.9)
L S . g'”] ) 2 : . . .
" where '
. . 2 .
2X = p(14tn) - 2z, sin v V(E2-1)(1-n2)
2 2 ‘ ‘
22 = psinw (2-1)(1-8) vz (sen) , . (9.20)
g=exp |-b, BB (g4) |-
1z s
where
-kZ
p=e
b, =28 r o (em)
1207 7~ o o )
zl = z-h
The functions f, and f,, Eq. (9.6) which yield I, and I, become
s 1° 7 E+n ’
_ - (9.12)
&by 1 - p(l+kZ)
f,= = 25 (1-f)
; kZ
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wvhere
(9.13)

9b. Expression for B¢

From Egqs. (8.1), (8.2), and (8.3) and the equations of this section we.

obtain
dI, oI ‘ L
A 1 2 ' ‘
Bqa = lmeoc [BT - 5T J , (9.14)
where A . _ ‘ o
o1, , ‘n/2 n cosh™a of, , A |
—5% =f dw f av ﬂ du ¢ —s% (9.15)
-n/2 . 0 0 .
where -

of ‘2kb2 l-bep(a-g)

1l
ot = .2 E+n- Pt
| | - (9-16)
Of, 254dy ) 5(14k2) .
or. 2 2 P
. r kZ
9c. Expressions for the Electric Field
We rewrite Egs. (édh), (8.5), and (8.9) to obtain,
. dI, dI
_ _A 1, 72 e .
Ep - hneo 8t oz + b (l-fp) > Sf
E¢ =0 , ‘ (9.17)

z ~
" g {% 5 (1) - 5 55 (o) + be (1ot 5 86} ,

€
o}

632 29
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. —b2po(a-l)
f = e s
o
-kz
P, =€ 1, (9.18)
l—po
g, = €xp (-2by kz,

For the radial component of the electric field, we obtain from Egs. (8.6),

(8.7), and (8.8),

31, , /2 o cosh ta B S
k- de\/n dv k/ﬂ au  of) , fh o+ s —52= , (9.19)
-n/2 0 0 )
where G is defined by Ea. (9.9), £, , by Ea. (9.12) ,
. b . .
oo sty YePnaa®) AP
z 2X ’ = Kz N
» (9.20)
Lo ZRAHE) (¢ y(aen)
K7
and
of z
1 1 1 a 1
- ;l Sz ° ;5 [:gjz - b2P§] + 35k (l+§ﬂ)(l+b2P§) ’
(9.21)
af 1 2.2 Z
1772 1-p(1+kZ+3k"2%) 1+&q 11 £
TE, ip(nz) z tP|2 3k (1+En) | &p 75

where f is given by Eq.- (9.13) and p by Eq. (9.11)..
For the z component of the electric field.we obtain from Egs. (9.17),

(8.10), (8.11), and (8.12) ,

O+

ah ‘ nn/2 T cosh "a . 1 Bfl -]
3% (lejz) = ‘jr .dw k/ﬂ dv u/‘ du Gfl,g hp + - —ng— s
- -n/2 0 0 ’ .

(9.22)

gy2 - 30
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where . . :
- pb
1l 1+em  PPrap oy
hp - p4+ 2x r2 kZ (g+n)
v 2oy ZRAHE) gy oiny VY (P)@n®) 0 (9.23)
. kZ .
and
1 afl D a 1 2 2
T 59 T L2 (- e + bepé) -5k (l+b2P§) sin w ’VQ& -1)(1-n7)
1 .
1 afe _ l-p@.+kz+%k222) sin w )/(52-1)942) -
L% 1-p(1+kZ) Z (9.2k)

2
+ b [%ksinw \ (62-1)(2-n) - fg} Ep T

where f is given by Eq. (9.13) and p by (9.11).

.10+  STATIC FIEIDS -

‘ Afte; the polarizétion wave:has passed to infinity a static charge
diétribution remains behind, Eg. (h.9); giving rise to a static;élect}ic field.
This static charge distribution is of interest as a limiting case of the
general fesulté. Eecause the bomb ionizes the air in nearly a sphérical region,
plasma oscillations, produced either by ﬁhe,flow of charges left by the polari-
zétioh‘wave or by the trénsient field reééting ﬁack upon the conducting air,
are‘ekpected to be relatively small as cdmpared with a ground shot (ref. 8).

10a. static Value of ¢

The static value of ¥ is obtained by letting 1 = « in Eq. (6.17). When

1t = o the polarization wave, Eq. (2.27), has passed to infinity. From

ﬁqs. (2.23) and (4.3) we have

it
o

(t-r-R) D(7-r-R)

for 1+ e . (10.1)
S(t-r-R) . ‘

m
R
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Substituting Eqs. (10.1) into-Eq. (6.17) with a change in notation we have,

- A ® ® T » cos a e ’F B-y
. 0] - -0 -7 .

where p' has been replaced by p, 2' by z, p by A, and z by (h+§/k) and where

from Egs. (6.18), (2.2), (2.6), and (2.28),

RZ = p2 - 2p)\ cos o + (Zl-é/k)2 £ 28 ,
SRR S
(10.3)
B=pe
y =8, (1-e%)/
(o] .

The integration with respect to o in Eq. (10.2) may be performed -in terms
\ ; ' = . : .

of complete elliptic integrals. Using the result (ref.-8, p. 33, Eq. (8.5)).

Nor

where K is the complete elliptic integral of the first kind and E is the

E cos 4 "2 -
f Ao o = [(l-—x /2) K(x) - E(x)] 5 (10.4)
_n X

complete elliptic integral of the second kind (Franklin, ref. 1), where

X = hpA , (10.5)
)2

(pr)% + (2y-8/k

we may write Eq. (10.2) as

AB ) ) -yr ‘
Ve = - 7‘??1% - d& b, f a 2/2 9-r2— H (x), (10.6)
where
10 = 2 [k A k) - 500 (10.7)
692 32
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and from Eq. (10.3) o K o o - L
D, = [jl - (1+e) efé]//gé S (10.8)
For numerical work in order to have a finite range of integration, we

introduce the change of variables,

A d)»=—'9——2 dé
(1-¢)

\ ‘ (10.9)
s = tan-lg , dg = ds/cos2s

Substituting Eqs. (10.9) into Eq. (10.6) we obtain

. 2 . L ; ) ) .
AB p n/2 P 1 . L3/2  _-yr '
0 2 t e
v o= - Jf ds Jf at : H, (10.10)
S e x/2 coss (l-§)77§ 2

o

where H is defined by Eq. (10.7), p, by Eq. (10.8), R, r, 7y by Egs. (10.3)

and where from Eq. (10.5),

x =

2. ‘ 4e (2-¢) . (10.11)
1+ (1-¢)° 2277 - (tan™"s)/ko] '

10b. Static FElectric Field, z Component

The z component of the static electric field may be obtained by. substituting

vs, Eq. (10.6), for V in the last of Eq. (8.4), and noting Eq. (10.1). Thus

19 A e 71" , '
EZS = 'p— ?p (pws) + ?O" (Z—h) r} ; (10-12)
where from Eq. (2.28)
y. =B (l-e—kzl)/z (10.13)
1 o 1’ ) ’
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and where by differentiating Eq. (10.6) we have

1 ® o 3/2 e ’
= : I 10.1k
a5 o .,Tﬁé‘fd”efod” z T o
where
I-H+20 B X | (10.15)
= pd-xyp. .
Using.the relations
dK 1 E
= _ - K i
dx X [l . x2 ]
"dE 1 ’ ‘ o
o= E-K), I ‘ ‘(l'.Q-lé)-'~
dx _ x A+p 2
%‘5[1’ ax]:
Eq. (10.15) becomes
I=_X_2. XX2E+2p [(1-x2)1<-(1-x2/2) EJ} (10.17)
W (1-x7) ' ' .

For computational purposes we may again make the change of variables given by
Egs. (10.9). The z component of the static electric field is, thus, given by

Egs. (10.12), (10.14), (10.17), (20.8), (10.5) and Eq. (10.3).

10c. Static Electric Field, p Component
The radial component of the static electric field may be obtained by
substituting ¥_, Eq. (10.6), for ¥ in the first of Eq. (8.4), noting Eq. (10.1).

Thus

. -y .
S A e 'l
Eps = - gz— + 'é: o} r5 > (1018)
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where

o AB, o o -yr ‘ . -
s _ o 3/2 e dH 9x y
where from Eq. (10.16) and
3 . S
L o- - (-t ‘ " (20.20)
we have .
x(z,-&/k) T
ox g_ﬁ. = _1_2._ [(1-x2) K - (1-x2/2) E[ . . (10.21)
z hpx (l—x )

_We may again make the change of variables, Eq. (10.9), for computation. The

- radial component of the static electric field is obtained by combining Egs. (10.18),

(10.19), (10.21), (10.8), (10.5), and qu (19.5): ’
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