
 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
66.194.72.152 On: Fri, 24 Jun 2016 19:20:31

A M E R I C A N  J O U R N A L  O F  P H Y S I C S V O L U M E 3 6 . N U M B E R 1 2 D E C E M B E R 1 9 6 8

The Bethe-Weizsicker MassFormulaandLennard-Jones
N ‐ NPotentials
JAMES PAUL Wnsmv

Physics Department, University of Missouri, Rolla, Missouri 65.401
AND

Amax E. S. Gauss
Department of Physics and Astronomy, University of Florida, Gainesville, Florida 32601

(Received 19June 1968; revision received 12 August 1968)

An elementary derivationof the Bethe-Weizsackersemiempirical nuclear mass formula.which
is in the spirit of current views of nuclear structure, is given. Lennard‐Jones potentials are
assumed?»not betweennucleons. Thus the:major interaction between 1m,pp, andup pairs is
taken of the form -‐g/ra+h/r‘, where r is the separation distance between nucleons, and g
and h are constants. An additional “symmetry” interaction of_the form ‐s/r' is assumed for
up pairs. Summing the potential energy over all nucleonpairs and using the Fermistatistical
estimate of the kinetic energy, the Bethe-Weizsacker semiempirical mass formula is obtained
directly. The constants of the mass formula are discussed in relation to the N ‐ N interaction
and are found to be quite plausible.

INTRODUCTION

The Bethe‐Weizsacker mass form 3.2

= ‐a1A+azA’/‘+aaZ’/A"3+aiD’/A, (1)'

is well knownasa simple and accurate representa‑
tion of the systematics of nuclear energies} Here
A , Z,‘_N, and D ( = N ‐ Z ) are the mass number,
proton number, neutron number, and neutron
excess, respectively, and a1, a2, 0;, and a. are
constants whose values are usually determined
from mass and stability data. In elementary
treatments of nuclear structure, Eq. (1) is usually
derived using the liquiddrop modelof the nucleus,
and the first three terms are physically interpreted
as the volume, surface, and Coulomb energies
The last term, the so-called symmetry energy does
not, however, have a.ready interpretation in the
liquiddr0p picture. In this articlewegive a simple
alternatiVe derivation of the Bethe‐Weizsacker
formula, which is more in the spirit of the present
self-consistent field view of the nucleus!-5

' C. F. von Weizsacker, Z. Physik 96, 431 (1935).
‘ H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8,

82 (1936).
' A. E. S. Green, Rev. Mod. Phys. 80, 569 (1958).
‘ M. Baranger, Cargese Lectures in Theoretical Physics,

M. Levy, Ed. ( W. A. Benjamin, Inc., New York, 1963),
Chap. 5, pp. 29‐32.

5G. Brown, Unified Theory of Nuclear Models and
Force: (John Wiley 6; Sons, Inc., New York, 1967).

I. THE LENNARD-JONES POTENTIAL AND
BETHE-WEIZSACKER EQUATION

We begin with the assumption that the major
interaction between pairs of nucleons in a nucleus
is a charge independent Lennard-Jones potential
of the form,

v=‐9/r“+h/r‘. (2)
where gand h are constants, fl>a> 1, and r is the
separation distance between nucleons. We also
assume that neutron‐proton pairs experience an
additional “symmetry” attraction given by

v.= ‐s/r". (3)

Summing over all nucleon pairs and including the
Coulomb energy, the total potential energy of the
nucleus becomes

A ( A - l ) / 2 Z ( Z ~ l ) l 2g h e2 s
V= - ~ + ‐ + " ‐ ‐ .

F . ) To" 7'95 1 ‐ 1 79 E V?“

(4)
Considering the mean value theorem,

2f (35,) =nf(16)“, (5)
p‑

where x 1 < z g < - - - <x.., f(:c) is continuous on the
interval 2:,<1:<:r,., and (11:)." is some value on this
interval, the various series in Eq. (4) may be
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summed to yield

2 r171=n/(137).,"
p.

= n/ (HAW)“’- (6)
In the last expression,we assume that any average
separation moment (93.7)“;r scales as A ” , where
r, is a scaling distance which depends upon the
power  7 .

To determine the kinetic energy, we use the
result from Fermi‐Thomas theory that

N = 2(41rR’/3) (p..'/61I‘fi3), (7)
represents the number of neutronstates of both
spins havingmomenta less than p... It is then easy
to show that the total kinetic energy of this
assembly of neutrons is given by‘

Tn=rats(732/MR2) (91/4)¢/3N5/3, (8)
where M is an average nucleon mass. Using
expressions of the same form for protons and N =
(11/2)[ 1 + ( D / A ) ] and Z = (11/2)[ 1 ‐ (0/11)].
neglecting terms in D‘/A‘ and higher, and as‑
suming that R=roA‘/3, it follows that the kinetic
energy of the nucleus is given by

T= ToA+%ToD’/A, (9)
where

To : (91/8)”'(3h’/10Mro’). (10)

From the experimental electron-scattering data,7
it is estimated that the nuclear radius constant
ro§1.12 F, which yields To=23.0 MeV.

Using Eq. (5) to evaluate the summations in
Eq. (4) and adding the kinetic energy asgiven by
Eq. (9), we obtain for the total energy of the
nucleus

2A(A ‐1)g+A’sE = T + V = n a ‐ 4 e r ,

AM‐Dh
mum

zw‐ne
mam

m s r A+‐CJ+ sA 9 4r.“A"”) ' (11)

‘ A . E. S. Green, T. Sawada, and D. S. Saxon, The
Nuclear Independent Particle Model (Academic Press, Inc.,
New York, to be published), Sec. 5.2.

7R. Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957).
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Letting a=3, 5 : 4 , and neglecting unity as com‑
pared with A or Z, the total energy reduces to
precisely the usual Bethe‐Weizsacker formula
(Eq. 1).

I I . DETERMINATION OF CONSTANTS

Identifying the mass formula constants with a
set obtained from a best fit to the data,3 we have

a i = (29+8)/4r33‐To= 15.82,
ag=h/2r4 = 17.90,
aa=e“/21'1=0.718,

and
a.=s/4r;'+5To/9=23.5, (12)

where a’s, g, h, and s are in million electron volts
and all distances are in Fermis.
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FIG. 1. N ‐N interaction potentials. V1, is 180 n ‐p Morse
potential of Darewych and Green. V 1 , ; 1 is a. similar
Lennard-Jones potential which matches V. at minimum.
V 1 , ; u is adjusted (through the kindness of T. Sawada
and D. Sellin) to bind the ‘Sn state near zero energy.
V;(P) and V:(D) are centrifugal potentials for P and
D states of relative motion of anN ‐N pair.
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From the last and first equalities, we have
s/4ra‘=10.7,

and .
g/2r. =28.2. (13)

We now appeal to studies of the N ‐N inter‑
action to estimate 9 and h. Figure 1 shows the
Lennard-Jonespotential V1.4 n, with 9=90.2 and
h= 67.6 which gives a ‘80 state near zero binding,
asdetermined using the Abacus II code.‘ Figure 1
also shows the Lennard-Jana potential VH I,
with 9:204 and h= 143 chosen to match the
minimum of the Morse potential V, for the ‘80
up interaction as determined by Darewych and
Green.9 This Morsepotential fits the experimental
‘80phase shifts very precisely from 0 to 350 MeV.
The similarities of the two potentials suggest
that by use of a judicious cutoff of the r“
singularity and by minor adjustmwts in param‑
eters, the Lennard-.1ones potential could also
provide a reasonable representation of N ‐N
scattering data for the 18'.) state. To dealwith the
“S, state, we must determine the value of 8.

Using the first set of values, we determine the
radius parameters rg=1 . l7 and n=1.l7. These
fall reasonably within the allowed limits 0 to 21-0.
The Coulomb constant r,=1.00 is roughly con‑
sistent with the estimate r1=5ro/6, which may be
deduced from classical electrostatics. Accepting
the value of r3, we calculate s=50.0 for the con‑
stant associated with the additional symmetry
interaction between 17.12 pairs.

I I I . DISCUSSION AND CONCLUSION

The physical origin of the symmetry inter‑
action has been considered in many studies,
particularly in connection with the explanation of
the symmetry term in the shell and optical model
potentials.m These studies suggest that the origin
lies in the apparent spindependence and I depend‑
ence of the N ‐N interaction in conjunction with
the Pauli exclusion principle. 0n the average the l
dependence may be roughly simulated by a Serber

' E . H. Auerbach, BNL‐6562 (Brookhaven National
Laboratory, Upton, New York, 1962) (adapted by D. L.
Sellin).

' G. Darewych and A. E. S. Green, Phys. Rev. 164,
1324 (1967).

|° Reference 6, Sec. 2.3.
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interaction of the form,
V=%E1+(‐ l)‘]V(T),

which vanishes in P, F, and other odd 1 states.
The centrifugal interactionkeeps nucleons outside
the range of the nuclear interaction in D and G
states. For S waves (symmetric in space) the 1m
and pp interactions (symmetric in isotopic spin)
can only occur in '5’states (antisymmetric in spin). '
However, np interactions which are mixtures of
isotopic spin 0 and 1 can occur in ‘So and *8;
states. Using the statisticalweights of these states,
we find

” I  =  ”up ‐v im

= eav+a~lv> a,
=%3v‐%‘v. (14)

The ‘ 8 ; potential deduced from our estimated
value of s is quite reasonable.

It might be remarked that a. more realistic
calculation of v. for L‐J a1) and 1vinteractions
would probably yield an r"4 repulsive term in
addition to the r“ attractive term. Such a sym‑
metry interaction would lead directly to a so‑
called surface symmetry energy which arises in
almost any derivation of the Bethe‐Weizsicker
equation}l To be physically meaningful, however,
we must then also include surface corrections to
the kinetic energy, a refinement which would
complicate our simple derivation. Accordingly, we
have simply represented the symmetry interaction
by anattractive term. Probably most of the added
attraction is associated with the tensor force due
to the 1rmeson, although other N ‐N interaction
components due to the w, p, n, and other mesons
also play a role.

In actuality recent meson theoretic descriptions
of the N ‐N interaction,11the so‐called One‐Boson
Exchange PotentialsOBEP, have greatly clarified
the nature of the N ‐N interaction. These studies
reveal that the N ‐N interaction contains spin‑
spin, spin‐orbit, tensor, and velocity-dependent
interactions comparable in magnitude to the
static central term. These interactions are very
similar in structure to the relativistic interactions
between. two electrons. The application of such

11A. E. S. Green, M. H. MacGregor, and R. Wilson.
Eds, Proceedings of the International Conference on the
Nucleon‐Nucleon Interaction, Rev. Mod. Phys. 89, 495
(1967).
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realistic N ‐N interactions to the finite nucleus
many-body problem remains at the very frontier
of nuclear physics research.12 To describe these

1’M. Baranger, Recent Progress in the Understanding of
Finite Nuclei from the Two Nudeon Interaction, 1967
Varenna Lectures (Carnegie-MellonUniversity,Pittsburgh,
Pa“, 1967).
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studies would carry us beyond the scope of this
article, which is intended primarily to provide an
elementary derivation of the Bethe-Weizsacker
equation. Contrary to the elementary derivation
based upon the liquid-drop model, the present
derivation iswithin theconceptualspirit of current
views of nuclear structure.


