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the

Introduction

In the process of working toward an approximate solution of

problem of an antenna consisting of a coaxial line with the

outside cylinder temminated and the inside cylinder extending a

finite distance further, it was found that the exact solution of

‘two
ful
two
ing

the

other antenna problems could be obtained which would be use-
for the approximate solution of the original problem, The
problems which allow an exact solution are an antenna consist-
of a coaxial line with the outside cylinder terminated and

inside cylinder extending to infinity end an antenna consist—

» of a single half infinite cylinder (see Fig. 1), Inasmuch

The case of a finite
inside eylinder

() The case of a single half
infinite cylinder

/N

( i The case of the infinite

inside cylinder
\\\4// insi

Fig. lo The structures for the three problems considered.

as the three problems vhich resulted appear to be of about equal

value, they are each presented on an ecquivalent and more or less

independent basis,
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The case of an infinite inside cylinder is stated and solved
in Chapter I. The numerical results are presented in Chapter IV.
Harold Levine solved this problem simultanecusly and independently
of the author; his results are presented in "Vaveguide Handbook,"
((icGrew-Hill Co., Kew York, H. Y.), Edited by N, larcuvitz, p. 208.
A year before the publication of this book H. Levine sent the
author a copy of his solution to the problem which checked in
most particulars with the solution the author had previously
found. A slight simplification is achieved by solving for E,,
the z component of the electric intensity, rather than Hﬁb the @
component of the magnetic intensity, as Levine did., Levine's re-
sults contain an error where he failed to evaluate an integral
properly for a particular choice of the parameter involved. The
author made the identical mistake until the computations disclosed
an improper discontinuity (see pp. 28a, 28b, 29)., N, Marcuvitz
in a letter to the author enclosing numerical results on this
problem indicated that they were aware of this difficulty but had
not resolved it. Apart from this one error the numerical values
which can be compared seem to check to three significant figures.

The case of the single half infinite cylinder is stated and
solved in Chapter II. Iio numericel results were obtained for this
problem, since the idealized problem presented does not corres—
pond to any actual nhysical situation. However, it is possible to
interpret this problem physically if another parameter is inbtro-

duced and the appropriate approximations are made. This was nob



not done in the present thesis, since it would have been a di-
gression from the primary obJject of finding a solution for the
case of a finite inside cylinder,

The case of a finite inside cylinder is stated and solved
approximately in Chapter IIL. The technique of obtaining this
approximate solution appears crudey however, it was checked
against an analytical method which allowed for an iterative pro-
cess for successive approximatioms, OSince each iteration re-

. . .

quired another integration, it wes found to be practical only to

g
the first approximetion. The essential difference between the
analytical type first approximetion and that actually used was

in the expression for Z/\. vhich is defined on page 73, equation

(15.4), the analytical type first epproximation yielding

<

vhich does not appear to ve as satisfactory as the simple approxi-

mation used. The numerical results are presented in Chapter IV,



Chopter I

The @ase of an infinite inside cylinder

"l._'

. = 5y .
The proplem of the infinit

=
tde
el

inite inside evrlindsr may be stated and

solved exactly; therefore no reference is made im this chapter o

inside c¢ylinder., The results of this

the prohlem of the finite :

=0

chapter together with the results of Chapber II are used in
Chapter III to obtain approximete solutions for the case of a

inite inside cylinder., The numerical results for the present

i~

problen are contained in Chepbter IV,

1. Statement of the problem.

The electromagnetic radiation from the following coaxial
structure is o he studied, The striobure is fomed ny fwo
coaxial metallic cylinders of vanishing thickmess, the inside
cylinder of radius a extending from =c0 to +o0o olonz the z oxis,
and the outside cylinder of radius b extending from =0 to O.

Zylindricsl coordinates () and z, and spherical coordinates r

- o

i T o . - e . 2 -4 s S AR
ang @ aye chcsen s indicated in Tig. 2.

Qi




A source of electromosnetic waves is assumed te exist between the

b

cylinders, i.8., the coaxial region, for z —>» -ov. The problem

P

then hecomes one of sclving iaxwell?s equetions for vacuum (or air)

.

with boundaries of an ideal mebal, i.e., with infinite conductivity.

.

It will be assumed thes the time variation for all the fileld compo-
nents is hamonic with angular {requency w. It will also be as-
sumed that & < 7Tc/(o ~ ga) where ¢ is the veloeity of light; sco
that only the TII or principal mode is propagated in the coaxial
2|

region.” The form of the solution in the coaxial region for

7 =y =00 1is then

B, = e (4e3KZ - nelkz ) (1.1)

HfP = % (AetkZ 4 Be~ikzy " (1.2)

with

where E designates the electric intensity, H designates the mag-
netic intensity, and the subscripts indicate the various components.

The remoining symbols are defined #s follows: A and B are as yetb

undetermined constants; k = w’-.:’}x
for plane homogenecus waves in free space vhere € 1is the specific

electric inductive capzclity and

1, is the specific magnetic indue—

tive capacity; and w7 60,7)2 is the so—called intrinsic

L 3. & Stratton, "Tlectromegnetic Theory" (IeGraw-Hill, New York,
- .y —
1241), pp. 5L!S-~;l, Ref, (1,
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Do

admittance. It is obvious from the geomebtry and from the form of
the solution in the coaxial region for z = = +that the fields
. must remain axially symmetric everywhere. Under these conditions

it can be shown that Mexwell's equations reduce to the J‘.‘ollovxr:‘u'zg:2

3\ 2 ¥ -0, (1.L)

12 (p22).
ga(o ()a) 25° z

2 + kz E = - (1.5)
922 e o"(aa Z

) 5
" 2 7%
“— 5" my =iy s (1.8)
=g 9 s

with Eq), Hy,y H = 0 everywhere, subject to the boundary condi-

e

and

1 -
— 110 =0 (1.8)
¢ el
for (9 = b, z % 0; and 6 = a8y -0 < 2 ¢ +®. In addition it
will be necessary 0 arni-the radistion condition outside the co-

axial region,

Bmne =2 o "‘i(—-'v".l‘.-"?'!‘.o”
o A Qerlwe 5100,

2
(o]
6]
T
<
e}
[s]
=)
L2
1
=
(o]



ik}??
E i* n¢ (X' (109)
as |1'i s A e #op ZZ - . Once E, has been found, equations (1.5)

and (1.6) may be used to determine E‘e and H¢; and all of the
characteristics of the electromagnetic field may then be deter—
mined.

2. Derivation of the integral equ_ation.3

Consider the Green's function K (?,-x)") defined by

W+ ) @P)=- & @-) (2.1)

where the del squared operator for the present case of axial
symmetry is given in equation (l.h)'and & (- P) is the usual

Dirac delta function; the boundary condition
_)
K(r,?’)=01"or€;a,-m<z<+oo; (2.2)

and the radiation condition

1k{? ?"

K (?,?’) O(.——_-;'T_)—-—' Ior]r—r'{—éoo, (2.3}

K

- . .
6 and e* > a where r is the position vector of an observer and
- i 3 ;
vt is *the position vector of an oscillating point source. Apply=—
. : . >
ing Greent!s second identity to the two functions Ez(r) and

K (3,21), we obtain

3 Ho Levine and J. Schwinger, Phys. Rev. 713, 389(1%48), Ref. (2).



5e

HK (721 (77° + ¥2) B, (1) - E,(21) (1% + 1) (?,'?f)}att

Volume

-y
28 (I") 2K
=J {K (FyB1) ——Pee— - B, (1) (?’,?)} dat. (2.L4)
anl anl .
Surfaces

Using (1.L) and (2.1), the volume integral on the left reduces
simply to Ez(?). For the surface integral on the right the sur-
faces are chosen as follows (see Fig. 3): 81 is the surface of
the inside cylinder; S is the surface in the coaxial region for
z =» =003 83 is the inside surface of the outside cylinder; Sh is
the outside surface of the outside cylinder; and SS is the re-

mainder of the surface of the sphare at infinity.

//’ \\\
S e = 1
5/ \\7
\
7/
” S), .
B, s 2o m s i
e e e ) \
/ hg s Y
i
Sol _____*= 3.____¥®PL
“' _________________ b
\ !
\....._._______._l /
. )
\ v 4
\ /7
\ 7/
N Ve
N 7
~
Fa
N o
~ -

Fig, 3. Region of application of Green's second identity.
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The behavior of E, and K on these surfaces is as follows: on Sq,

2F
= O from (1.6) and K = O from (2.2); on Sp, = ‘:‘= 0
n ‘
from (1.3); on Sy E, = O from (1.7)s on S)» E, = O from (1:7)3
PE, k[Pt _—
and on Sgs Bys from (1.9) and K, ok ==
Z” ont |21 | S nt |7 |

from (2.3) where k is assumed to have an arbitrarily small imagi-
nary part, k = @ + 1iX., Green's second identity (2.lL) then re-

duces to

-.)t x 1
E,(?) = J K(F,7) -352—(;—2 dat -I KR, ¥) —2- B, (F) dat . (2.5)
54 £ ), - “¢’

Let

éEz(p',z') (0' =b+0

a€' | €'=b-0

0 (zt) =~D (2.6)

where f' = b + O means that the expression is evaluated on the
outside surface of the cylinder, and (a' = b - O means the ex-
pression is evaluated on the inside surface of the cylinder.

Equation (2.5) then becomes

O
5, (pr2) f K (5, ps%,2) § (1) a (2.7)

—=Q0

where we note that

K( ) K(Lﬁﬁz)z)
2 T




To

as a result of the axial symmetry. In order to obtain the integral

equation the boundary conditions on I, ((9,2) are used, i.e.,
B

Similarly using definition (2.6), we find

»
Q

$ (z') for z?

b (zt) =

0 for zv > 0 ,

]

It can also be shownlt that X (b, 6, z'y, z) = K (b, (), z - zt),

The integral equation,
00

E, (byz) = { K (by by z = 2t) § (2*) dz* , (2.8)

-0

resembles the Wiener-Hopf type of homogeneous integral equétionS
which can be solved by the application of a Fourier transform
method. In perticular the unknovm function, 0 (zt), can be found
from the solution of (2.8) and substituted into (2,7) to yield the

desired field variable E_ ((>,z).

L
See Appendix B

5 B, Ca Titchmarsh, "Introduction to the Theory of Fourier Inte-
grals" (Oxford University Press, london, 1937), Chapter IV,
_ps. 339, Ref. (3).

6
Levine and Schwinger, op. cit., p. 393, Ref. (2).



3. Derivation of the transform equa‘bion

The Fourier transforms of E, (b,z) and ¢ (z) are defined

as follows:

oo 00
gz( L) = I Ez(baz) e‘-ié ?az = I Ez(b,Z) S dz , (3.1)
-0 7 -0
and
@ _ °  JE_(p, =b+o
3¢ ) = f §(2)e7 "%z = “J v "';‘(L') et G
=00 -0 6 F:‘eb-o

Multiplying both sides of equation (2.8) by e~1% 2 gng integrating
with respect to z from z = =00 %o +00, and assuming foer the moment
that it is possible to change the order of integration on the

right, equation (2.8) becomes

0 N o0
j K(byb,z -zt )e1(Z2" )og(, z_r)f 0(zt)e 2%z, (3.L)

e o) -0

Substituting the definition of the trensfomms inbo (3.4) the trans-

form eguation is obtained,

7 loc. oit., Ref. (2).
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CL:Z (b,(,)=ﬁ\/(b, b:é)@(é) H

or merely
£, (L)=2¢(2)8 () (3.3)
Wher68
W,
(6,3 5 s4)=— >~ 2 (y ) (3.1)
?(f> (< : H(l)( a) S

where

20(2’(”() = 72"‘7{‘3‘0()/&) No(r €<) = No(xa) Jo(y €< )} P) (3.ka)

and ¥ "™ ? — Lz . The phase of the radical is chosen so that
for ¢ on the real axis (k considered real) the phase is O for
16| < k and -é?for |& ] > k. According to the convolution theorem,
the above application will only be valid in the common region of
analyticity of the three transforms,

We now verify that such a region exists. The Green's func-

9MK=

tion transform is analytic in the strip |Im {| <« o where
. In order to determine the region in which _@ (L) is defined,
substitute the asymptotic form of the integrand for z = - into

the definition, (3.2). Using the assumed asymptotic form (1.9)

of E, outside the coaxial region and noting that E, = O inside the

% pa

B See Appendix B.

8 Loc, cit.
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coaxial region, the integrand is seen %o vary, putting £ =

&+ i)?, as

-ikz -
2 citz ~e(°<+>?)z for z — -,
2

o (¢)] "‘{ 10 (2)] "% dz

=00

is bounded for Im ¢ < =X, since |{ (z)| remains finite over the
range of integration. Therefore § (¢ ) is analytic in the upper
half plane, Im ¢ > =X, In order to determine the region in

which & (&) is defined, substitute the asymptotic form (1.9),
for z => +o0, into the definition, (3.1)., The integrand is seen

to vary as
-E- eibz _ g(X=7m)z for z =) +m.

Then'

00

8, (0] éf 1B, (b,2)] o M% az

o}

is bounded for Im ¢ < X, since |E, (b,z)| remains finite over

the range of integration except at the origin where it is



11.

10

* integrable. Thersfore dﬁ;(&) is analytic in the lower half

plane Im é < . These results are summarized in Fig. L. There-

fore

C=fé +i?)'phme
b(e)
A

1
T A
v A (L)
X 4
cA
v \
Y &%)

Fig. L. Regions of analyticity of the transfomms.

the common region of analyticity for which the transform equation

is valid is the strip |Dm {| < o«

lis Procedure of solution of the transform equationl1

The next step is to write X ( ) 2as a ratio of two func-

tions,

CH(E)=uN(L) /(L) , (k1)

0
1 ¢f. post,.Section T, p.

1
Levine and Schwinger, op. cit., p. 395, Ref. (2).
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where M’"(f,) is analytic and has no zeros in the upper half plane;
Im ¢ > =oX, and Iu-’(é) is analybic and has no zeros in the lower

half plane, Im ¢ ¢ ok. The trensform equation then becomes

(L)L) =u L) &, (L) . (b.2)

The left side is amalytic in the upper half plane, and the right
side is amalytic in the lower half plane., Since the two sides of
the equation have a region in common (the strip Im {| ¢ ) for
which they are simultaneously analytic, the right side must be the
analytic continuation of the left side. Tegether they represent

a function, £(& ), analytic in the finite & plane:

-
(L) &, (L) for Im & ¢ X

£ (&) =.4{ Either expression for Im{| < XK, (L.3)

E(g)d (&) for m &5 - X
.

if this function, £( &), is analytic for all points in the finite ¢

plane and = Lim if (&) remains bounded, then according to
{ & | *90

Liouville's theorem,l2 the function must be idemtically a con~

stant, £ (£ ) ¥ ¢. This gives the results:

B(e)=0c /(L) - (k)

" F. T. Whitbaker amd G. ¥. Tatson, "A Course of Modern Analysis'

(Am. Ed,, leemillan Co., Few York, 19L8), Chapter V, p. 105,
Ref. (L).
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il

&, (L) =o /K (L), (L.5)

Then from (3.3)

]

c»ziikz{iziél (L.5)

Cc:z (6’&) M+<&) .

Taking the inverse transform,

00
e (b ] A%
i3 7)) = o Zf_z.ﬁ_z.é_ e 4 .
z ( 6 2 ) zﬁj M+( z‘ ) &
)

In order to evaluate M (%) and 1 (¢ ), the general method
of procedure is to apply Cauchy!s integral theorem, Consider
)"1’( L) in the region in which the function ismegular., Apply

Cauchy's integral fomula %o log X(Z):

log H(& ) = -2-%-; -1-35:2%2 dt . (L. 7)

Since X (¢ ) is regular in the strip [Im { | < X and has no zeros
in this strip, log (&) is regular in this strip (where the
principal value of the logarithm is understood). Consider a

rectangular contour confined to this strip with ends displaced

5 e s < 2 2
to infinity (see Fig. 5.). In this strip 0 ¢ arg ¥ k%=t £%

.
2



1h4.

e 1 . ¥
and 13 for |t] = w0, (%) ~ 1/|ti. The integrand for |t| = oo

n this strip becomes

log A (%) _ _ logit! s
- £ % o
= (u + iv) plane
-
fk
.:< e .
17 |
™ . ol
vl oy
r— :
= \( €
" -
-k

Fig. 5. Integration contour for ¥ (&) and i (& ).

Thus the contributions from the ends become negligible. BEquation

(L.7) then becomes

-i€ e Lo o
og At og )
F—n 4% = = et g
log. 2 (%) f 2 ,,Trif reviars

-m=-1€ ~-00 +1€

he first integral converges, it is an analytic function for

if %

-ty

A anywhere in the upper half plane, Im & > -~ € ; since the inte-

rip in which the integreand is regu-

i)
cf

gration is restricted to a s

as ] > 3 ~—+
lar. The first integral then defines a funection, log I (&),

13

See Appendix B.
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analytic in the upper half plame, Im { > = X (where it is per—

missible to let <X - € =» 0), Similarly the second integral de-

fines a function, log M (& ), analytic in the lower half plane

Im ¢ < (. Taking anti-logarithms equation (L.1) is obtained.

In the limit as X =>» O, we have

10 A (6) 44

wit - o 5 1
W(6) =1/ (8) = e | 52

5. First evaluationlb' of x'( L)

r,

=00

-6

L

(L.9)

In this and the next section two expressions for M'( )

are derived. The reason for obtainiag two expressions which must

be equivalent is merely %o be able to choose the more convenient

expression for numerical computations.

tion in (L.9) is broken up as follows.

o =k (s8]

[ -] +f+l.

The interval of integra—

Combining the integrals for % < o with the corresponding integrals

for t > o and inbtroducing the proper phases of the square root,

k?’- ’52, ¥H(L ) vecomes

1

Xk 00
: logH(y o) log X(iy'h)
W (L) = exp _é_ J‘ __i:___é:__< — 4t + L g9 ( Xz - at| (5.1)
1ri T A 7i £° ~
o
¥,
1 1 ovine and Sehwinger, op. cit. p. 296, Ref, (2)
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where %/(Vb) = (%) is given by (3.L) and 15

N (1y'v) = (%) =

Ko(y'0)

M {Io(\('b) KO(X?a) - Io(y'a) I{O(X'b)} (5.2)

where ) V tz— kz . The combination of the two integrals for

t < =k and t > k insures the convergence of the resulting integral
from k to w, the original integrals being individually nonconver-
gent, When ¢ is real, the singular integral in (5.1) may be eval-
uated as the principal value plus 771 times the residue of the
integrand at the pole t = & . The plus sign is chosen since the
contour is indented below the real axis, Let x = Y for the first

integral, and x = ' for the second integral. Then for & real

and & < k

o x-(x -& )Nk=-x

-

® ;
1& Lr ' %z log A/(ibx)
+ D
[x2+
0

where P designates the principal velue. Writing ¥'(¢ ) in polar

form for Im & = 0, {{; & I, we get

15

See Appendix B.



1.

(5.1)

LUCAIEREY (S]

[ Iy (bx) i
é kx{tan ( - gan~ (-
- P
S R e e

% -1 _Jo()’b) _ -1 __Jo( a)
arg (W(C))'z{taﬂ (-——-—No(xb)) - (__L.NO(XJ}

& J‘ x log L?f(bx)] !
T i [x2 - (k2 - QZ)] V k2= x2 &)

o ‘ ,
+%‘[ ; x%og?{élox) - 2dx'
N e ¢ A I VA

Evaluating (5.,L4) and (5.5) for & = k, we get

()| =

k{b _1( Jo(bx)) “I:an( JJ&X))}

an " \"{.(bx)/ "~ " W.(ax)

VIog b/a ex —7—]%\]‘ - s g = I\.Io dx| (5.6)
x k¥ x

and
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Xk A . @
are (1 (1)) ,%I Log| A (x)] oo . .Tl;c_r Log H(ibx) 4 | (5.7)
) xV1B- 2 |z E <

6. Secomd evaluationi® of 17t (£ )

Consider the logarithmic derivative of M'(& ) as given

by (h.Q),
a | 1% 108(%)
i 2 ¥ e 4 . .
d & log 205 2TTi Lo (6= &)° o (9s1]

In order to avoid questions of convergence teke the limits of
integration as =T to +T, and later let T = . The path of
integration along the real axis may be broken up es follovs:
let ri be a path from t = =T above the branch cut to &t = =k
and back to t = =T below the branch cut; and let B be a path
from t = =T to t = =k Selow the branch cut and from t = =k %o

t = +T along the real axis (see Fig. 6).

16 Levine and Schwinger, cp. cit., p. 396, Ref. (2).
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Fig. 6., Integration contours for the second evaluation of M¥(% ).

Then we have

+T

\[' + J e (602)
-7 '
Vo
Consider the integration over the contour [\ Since Zo(yd) is
regular in the region of the branch cut, we have, upon introducing

the proper phases of kz- tz and combining the two integrals for

the path above and below the cut,

TTL,(Y ') .
1 J‘ logX(t) 4o . _ L IT Yoz Ko(Y 'P) . (6.3)
21T = (t - &)2 AL ¢ TTIO(X'a) s (% + &)2
1 R :

Ko(Y *2)
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The asymptotic form of the integrand is

log Q2651 (b-a

(b +& )2

(6.4)

whichll varies as --t- for t = o ; therefore the integral diverges

logarithmically for T —» ®. In order to isolate this singularity,

add

_ log e_zu’bz-kz(b"a) _ 2/4° - 12 (b=-2a)
(6 + &) (b + & )

a quantity which is zero, to the integrand, where we note that

7
i 1 2/t2- 2 (b-2a) . i(b-a) _. 21
= zml[ Geef T the
—MV 1 +__2__.é_tan'1M . (6.5)
T et
Let )
© TTIO(Ytb) y 7 T |
F(g)=exp 2T1ri f 1ogj nf"é}{::)} o—2Y t(b-a) gt_dté . (6.8)
Io X +
. \ ST !

11 See Appendix B.
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Then the contribution over l—; becomes

4 _i(b=a) 2 & Yy A
it log F( &) = 1+\/]_;2__g_é_’can Y

i{b~=a

. 2T
+ Lim log — . BoTl
= L log = (6.7)

In order to evaluate the integral over [—2', we close the path
with circular arcs at infinity and two paths passing on the two

sides of a branch cut taken along the negative imaginary axis

thru the zeros of Z4(Y'b) = O occurring at % = -i,/b/nz_kz

(see Fig, 6). Since this contour incloses no singularities, we

) ]f;wj -J . (6.8)

have

ares branch cut

First evaluating the integral over the arcs for |t| — o in the

lower half plane where Vk° - +° — it, we havelS

— =L (28(bma) _ 4
2 (%) e | 2 -1) .

In the fourth quadrant the integrand of (6.1) then becomes

18 10c. cit,
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which approaches zero in such a way that there is no contribution
from the inbtegral over the arc in the fourth gquadrant. In the

third quadrant the integrand of (6.1) becomes

_2(b-a)

%

o

Then in the limit as T ~» o, the conbribubion over the ares he-
3

comes

1 £ 2(b b
-a - a
E_Ej [- — ]d’c= 5= - (6.9)
(-I)

Second, we evaluate the integral over the branch cut. <Since the

asymptotic form of the roots is given by

afl 1.
Ty, ¥ —t Hzd s (6.10)

the number of roots in the interval, O to =T on the imaginary axis

. b-a e s ; h-a
Where [ T | signifies the largest integzer less than T Ts

g
7 (Y b)
)(Yb,‘.' i z;n“”:’Ya) and — ol¥

: w K
The functions f,
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are regular in the region of the negative imaginary axis and
therefore do not contribute to the integral. The remaining ine-

tegral to be calculated is

(6.11)

J /"‘—“-‘
Zﬁif logE t+ i n )(t-(’)

branch cut

where the phase of (% + iV Ynz-gz) must be chosen 27T degrees
greater for the integral over the left side of the cut as compared

with the integral over the right side. Thus (6.11) becomes

=i
N
- 1
2 . (6.12)
l\[‘; _ 2 nal
; - !
But since Lim nzl = -logm| =1log 3 =c= 0.5772 where ¢ is
m=>0 |N=

Eulerts constan’c,lg we have from (6.12)

1)
fim L Jib-a) 1 , i(b-a)
T CO .~ 4% nTT & +ivy, k:z nTT
n=1

_ _i(p-a _Z i(b-a) | 1
"T SR o

n=1
i(b=a) b-a) %
+ = Tl;illglo log -(-1—__'—,—- T Q v (6.13)

19 Whittacker end Watson, op. cit., p. 235, Ref. (k).
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Collecting results (6.13), (6.9), and (6.7) and combining them ac—
cording to (6.8) and (6.2), we get
d : b=a) b=a)k
—mlogff’"(C)—-—-—logF(C) 3—(-—-—llog-(——--7)-—£
ag deg T 2171

(6.1L)

_2i(b-a)e g Vi -&2+°°Z i(b-a) 1
W,/kz_az k+ nTr &_'_i,/b/nZ_kZ

n=1

where the two diverging terms conveniently cancel each other. It
is now necessary to integrate (6.1L) in order to obtain MY({ ).

Tsing the relations

00
. i(b-a) | 1 .
-2 (% Y e

n=1

ad 1(b~a)£
const. log T_I.(:Lyn) -I_I1/
end

J_ o _1JL_7: & JZTET son \/2——“-

ccb—— 50 T]

2_(92 k+d,

+consts ,

= obtain
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2i(b-a) mt -1 \/WM (6415)

where C is a constant of integration.

In order to determine C, we note that in the strip, |Im&| < X,

(L) =u(&) /W (g)=u &) (-¢), (6.1¢€)
using (L.9). As may be shown by an expansion into an infinite pro-
duct,zo

0
. 2
Zo(Y D) = log -;l 1:-'1- L - 1——- . : (6.17)

Y 2
n
Substituting the explieit expressions of (& ), using the ex~
sansion (6,17), and "(& ) into (6.16), the common factor (6.17)
may be cancelled from both sides. Now consider (6.16) for
!(,] => o in the strip and substituting in the asymptotic forms

of the Hankel functions, we have
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[  i(b-a)K-¢ _
b
2 W tan 1“""‘—+tan l_é‘k+

c T

e k& “k—&",

b
log Y

vhere F(¢ ) and F(- &) => 1. Thus

1
a\% / b
C = (;-) . 10?‘ ’a" & (6.18)

Before writing M’"(&) in its final form it will be found convenient

to reexpress F(& ). Let x = Yt in (6.6); then
[ - )
I_(bx)

QO ﬂ?gm—i
1 o\ DX o—2(b-a)x

KOREl ko I s

Ko(ax)

vV

-3

o)

% Qx
(X?‘+ K2~ C,Z) (x 24 1 L )‘/x + K

dx | . (6.19)

Upon extending the range of integration,the first part of this inte-

gral becomes

1 00 Ko(a:{) - (b"“a ):a xdx
ST IOD log T (om) e D) (6.20)
- 3 20g(,/F 22 i(o-e)
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where the integral is evaluated by closing the contour of integration

in the lower half plene. The second part of the integral in (6.19)
is reezpressed by replacing bx by x and ax by x. Finally, we oh-

sain

135 \ 3
I-I( Y b)) . N2
HE) = g =5 Lo oapeme)) ® (6.21)
/
H, (Ya)
00 N
: wrlz) 3 c ,
= 1z j oN*/ L\ =2X bx
exp log —7— i] &
‘ 2T KO X) (X2+b2(k2~ 2)]'-;X2+b2 1',.2
o

This result corld have been obtained directly by applying the

general Couchy integral formula method tc

b T l\ 3 = (1‘; b —i b-a\
/—a- éc< ’(Yb)/ﬂo‘ (Ye,>= y( LI
As a check on this result we note that

7 (1) A
S . D el (YB) _sve- \
Fkﬁ)f\"‘éﬁ=ﬂ/;—-—-—l)x . o~iy(o-a)
o (Ya)

L3

is (&1 => 0, |Imf! < of this becomes 1 as it should; and as

: o /D v i
i & | = k this becomes, B which is correct.
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Writing (%) in polar form for Im & = O, lC £ k, we ob-

tain from (6.21), (6.18), and (6.15)

1 (&) = VIRTEIT exp [- -Q-z:-%) g, | (6.22)

: ro gan~1 Kolx) . ==
2 | Mo | | [2s 2 £2)] Vs To2
ax

dx
{x2+ az(k2- 42)] "-./x2+ a2k2> jl

and, letting d%y(,) = arg{w‘<¢>} ,

(re) - (S 1
el o6

3 __l_°< 2R R I 1S 4.0

. No(Y ®) No(Y 2)

& \[001 1/ 77 IO (‘“ o 2% bx -
e —— of 1+
2y %2 (x) (242 (K2t 2 ) W DR

(6.23)

ax
- dz
[x2 + a2 (k° - &2)] Vx® +a2k2)
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To evaluate (6.22) and (6.23) at |& | = k examine the integral in (6.21)
and let |& | & & (|4 ]| € k and & real). Breaking the interval of in-
tegration inbo two parts, the first from O to (K° - £213/16 gna the
second from (lc2 - 42)3/16 to @, the integrand of the first integral may
be simplified by the approximation

bx Cx

%%+ b7k x|

and

Io(x)
S - i|eex

— - = o lr_i; '3
) log(-1) = 8

log

and the integrand of the second may be simplified by the approximation

1 L
x2+ bz(k2 - L‘,z) %2
where the largest error is for x = (1«:2 - {;2)3/16, or

% 1

= £ p(IP-¢ )4 - 0
(e - &2)3/8[1*_1)2(1{2_ {;2)5/8] (i - &2)3/8

for |¢ | => k. Thus we have



i TT1o(x) b
n 12| 10 R A T BN T/n? + 2208
gk 217 Kolx) [ + 2 (12 - £.2)]Vx® + 2D

- dx
[x%+ a2 (k2 - &2 )]\/P + Pa%

(kz C))B/IG
= Tim _9‘ _}_ -.ZL J X X
|| =k || 27 2 | 2+ b2(K2 = £2) x24a2(2 - £ 2)
- : (TTIO(x) ) el b s i
. (122_&2>3/18 ; Kofx) | VXS + BPKE %2 + alke | X

-8k dx
:;x2+ Kal | X (6.23a

where for & =3 -k we replace +k by =k in the formula, Taking real and

imaginary parts of (6.232) and substituting the results into (6.22) and

(6,23), we obtain

k Ks(x) b a dx |
7[ {TTIo(x)} (x/:-éi KeH? ) e kZag) ;J (8,25



and

@
gb a!k =1 Xk
b1

n

400 - L5 e )

nN=

00 2+ 2
71 X
j log 1§ b (x) g%
)

- R — -
Koz(x) VR 1202 JxP s azkz> %

b

When k —» O the integral in (6.23a) yields + log = by the same pro-

- N
Lfx|
cess 80 that

Lim [M*(k)| = V1og ;E

k~90

and Lim é’ (k) = 0.
k=30

T. Verification that M*( &) yields a solution.

It has already been shown in the previous work that £(&), de-
fined by (L.3), is analytic in the finite & plane., Therefore £(& ) is
an integrel function, i.e., is ‘expressible as a power series in & ., It
remains to be shown that £(& ) approaches a constant for |&| = .
First, for M'(& ) consider the asymptotic behavior of the infinite pro-

duct given by
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Substituting in the asymptotic form of Yn and neglecting k/Yns
this becomes

0

T [i-2e0-2 ER
si} nTr

Using the Weirstrass defj_nition21 of the ]—' runction and Sterling's
asymptotic fornmla?? for [, the asymptotic form of the infinite

product becomes

where ¢ = log @ is Buler's constant. This is valid for the en-
tire & plane except the negative imaginary axis., We also have

<ze relations

2i(b-a) fBT7T (-1 VR LS ba fmw vog [ Lt 3/i%= ¢ 2
T x+ g T . k

—~ —%TZ-?» (b-2a) log% for—-g—ré arg\/kz—&z & g.

“hen from (6.15) we get

M’*(Z,)N——-}——— for |&| = w, Im& > - K. (1)

L

(-1&)?

21 1pid., p. 236, Ref. (L)
22 Tbids, p. 253, Ref. (L).




Similarly we may find

aled

(&) ~ (R&)7 for (L1 = 0 , % < X, (7.2)

Second, the asymptotic behevior of &, &) is to be found by

§3 n o -

n the neighberhoed of (9 =band z =0, In

:
<)
H
e
1
(_}.
3
[0}
]
1]
~~
0
-
N
~—
fts

This region we may regard the dimensions as very smell compared
“Ath o wavelength, so that the static approximation may be used.
Solving for the static field near the edge of a charged plate by
‘using the Schwertz—-Christolfel tr?msformai_:ion, WDOLEV ;Iz(b,z)

1 :
Nl/z'*’ for z =) O+ (where O+ mesns z approaching zero from the

ok

dositive side of the origin).”” Using definition (3.1) the trans—
Zorm becomes

&, (&) ~1/(14)% for &I = ® , Img ¢ O, (7.3)

. Third 4o obtain the asymptotic behavior of @( %), consider
W(b,yz) defined by
(a = b+ 0

(byz) = bHH(p 52) : (Tok)
Wios Pte on B

Since H(p(e,z) is a continuous function of z for e =.b10,
here being no infinite current discontinuities, ’q/(b,z) is a con—
inuous function of z and is zeroc for z 2 0. Then ‘q}(b,z) ~ z(3

: 7 5
ensiorm of Ylbyz),

We e Dymbue,
Co., Miew York,
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by 6) ~ /(-1 W for |g ] = o, nE> 0. (1.5)

The relation

-ik? -

o(¢)

A

Yf(b: g) =

(where N appearing here is the so-called intrinsic admitbance)

nay be deduced from equation (1.6).2)4 Thus
Q(Q)w(—ié)l—ﬁfor (L] = o, Imé& > 0. (76)

Sombining (7.1), (7.2), (7.3), and (7.6), we obtain the result
from (L.3)

(2 8(2) ~ (128 P oor me > o)
(&) = ¢ ; P (7.7)

LM"(Z, ) & (&)~ const for Im& < O

-

for | | => . Since (5’ is greater than zero, £(& ) cam not
become infinite in the upper half plane as rapidly as (—1&):3.

“hen £(& ) is a polynomial of degree less than %, i.e., & constant,
2nd {3 must egual ;}g. Thus we have verified that equations (L.lh)
and (L.5) giving §(¢&,) and §Z<é> in tums of (g ) and M (&)

are proper.

N\

1 - .
2h ap, post, p. -3, equation (3.1)
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8. Integral expressions for I-Iq)( e,z)

As will be seen in section 9, %(6 s2) is more useful
for the evaluation of quantities of physical interest than is
Ez(( 52); 5o that it is now necessary to find H@(€ 5z) in tems of
Ez((o 22). Multiplying equation (1.5) by o362 gng integrating

by parts with respect to z from -0 to +o0, the left side be-

comes
o~z |t _ 1QH¢ + (K% - &,,2) I iz Hq)dz .
Z==00 -

Since asymptotieally d@ varies as o1tk %] where k is assumed to
have a small imaginary part, <X, the bracketted term is zero for

m¢| < &« . Defining the Fourier trensfomm Hy as

0

Hylest) f Ty 22) o352 gz ,

=00

the relation between the transforms becomes

i 95( 3&)
R s 6) = =2 L (8.1)

Substituting in the expression for £ ) given by (L.6) and
g z (D’

%a2king the inverse transform,

ey o2 9?((035; &) "
Hy(e »2) = 2¢ %2 qg,, (8.2)
I¢(€ ‘ 2TTi jv ut (4)(1{ s & )




3k

Consider the following regionms:

N
o
')
3]
i~
o
v

and L. a £ (ﬁ (see Fig. T).

W
[

. g
(0 >

e L e B e

Tig. 7. Regions for which different expressions of Hq) are found,

The following expressions for Hq)((a s2) are obtained by choosing
the proper form of H/(b, (0, ¢ ), depending on & and writing
(L) as X(byby &) K (4 ) for z &« O:

for region 1

ey o Hl(l)(Y e )Z,(Y'b) Jitz
a7 8 e <7 e
-0 So \Ya’)YM (&)

8% 3 (8.3)

- T &, O o=
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for region 2

Lo Ya)‘(M"’(é\
where Zo' (Y 6) = % 2—@%- ZQ(Y€> ; (8.La)
for region 3
%= s r’ RO, (8.5)

Viywmyyir(e)

and for region L

CD‘ t i?,z

o cky Zr(yele

o = zrrij Z(yb) Yy (e) LA S5
-0

These expressions may be rewritten by closing the conbour of
integration, in the upper half plane for z > 0 and in the lower
half plane for z< O (see Fig. 8). After some minipulation, we
obtain:

for region 1

2 b)Z,? itz
o f Zo(y o)t (Y o)t o
BERFACYIIES I



for region 2
ik
Ep = ﬁ%—% * {expression (8.7)} s (8.8)

for region 3

- oy [ (uly e Wo(y )= M (y p)3p(yb)}eit?
T 1, My 1Pyace)

d& ; (8.9)

and for region L

on e-ikz
2 log -%- o (=k) e

+ {attenua'bed tenns} (8.10)

H¢=

where

a,
1 M ~(=1Kp )

© i H'nZ
[ tems} - 211_];,7_ Z [Zo (hy p)e
n=1

X, Lim w] » where by = V%4 K

’ta}-'?-i}(n Zo(y®b)

are the roots of Z,(hyb) = 0 ,

e anP o) g e s g gl i mttrormmTnr il eraGaREa

s ctzotman o vl Sh S it 5
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.\\\\\\ & plane
N\
e ; &for regions 1 and 2
+k
S ]
/
- for region 3 ~»

~—~——)

&~ for region L

Fig. 8. Integration contours for H®.

¥e are now in a position to discuss the qualitative nature of our

solution., It is immediately obvious that the solution lacks con—~

$inuity between regions 1 and 2. Therefore our solution is not

oroper. However by adding a sclubtion of the differential equa-

25 satisfying the boundary condition (1.8),

eyt o) 61

25 The differential equation in this case is
2

(¢ af@ > _"1"5‘“;2-”“2)H¢=0

(see Appendix A)
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c)zeikz
= m s (8»11)

to regions 2 and L, continuity is established. The solution added
is merely the original source that was assumed to exist inside
the coaxial region for z — - . Levine and Schwinger presented
a method 26 which may bé used to simultaneously obtain the form
of the solution for z —) —oc0 inside the coaxial region end the
asymptotic form of the solution outside the coaxial region. Al-
though the method is neat and elegant, it tends to obscure the
Pact that an incorrect solution has been obtained until the extra
term (8.11) has been added., In conclusion, we may use Hq) as
civen by (8.3) or (8.7) for both regions 1 and 23 for region 3 we
ney use Hp as given by (8.3), (8.5), or (8.9); and for region L

Z-'I,b becomes

& olkz o 1kz
- = - 5 + attenuated terms. (8.12)
26 M (k) log 1 M (=k)

2., Physical quantities of interest.

It is not practical to describe the electromagnetic field
in detail; and so only the features of primary interest will be
considered. From the reflection coefficient, R;, defined as

R/A (from equation (1.2)), it is possible to deduce the total power

26 Levine snd Schwinger, op. cit., pp. 386=7, Ref. (2). By em-
ploying the function §(F) = J1(kcp sin 1) e~ikz cos 87 rqy.
the present problem, the same prccedure may be used to obtain
similar results.
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radiated and the parameters for the equivalent circuit of the open
end. The gain function, ¢ (8), defined as the ratio of the time

sverage power flow per unit solid angle as a function of the angle
8 (for r = o ), over the total power fadiateds describes the con-

figuration of the radiating field outside the coaxial region.

a, EﬂEiZ@EQE?_°i£EREﬁE7’
Consider the coaxial region for z =) —mw. TFrom equation (1.2)
and Ampere's law, I = BTTEIw” we obtain the current flowing on

the inside cylinder
I = 2TT(AeikZ 4 g=ikzy | (9.1)
Trom equation (l.1l) and the definition of the potential between

b
the inside and outside cylinders; vV = J‘ E}ed.e, we obtain
a

T i Jog L (4675F « Be By (9.2)
a

“t may be nobed that equations (9.1) and (9.2) correspond in form
%c the expressions for the current and voltage in a transmission
iine. Thus it is possible to comstruct an equivalent circuit.

Defining a phase factor ksj such that

.. 2iks
Ry =- Ry e T, 9.3)

21 Stratton, op. cit. pp. 5L9-50, Ref. (1).



we have

Pl . 21k(s7-2)
I = 277 hetK2 {1 A (51 “’}

and

Zik(sl—z)

ikz 1 + IRI] e °

V= log 2 Ae
a

=
Y
Consider I and V evaluated at z = sq. Using z = sq as the end
of our equivalent line circuit, we find that it is teminated by

2 pure shunt conductance (see Fig. 9),

1_
c=L 272 LA (9.1)

7
log -2- 1+ ]Rll

<

n
—
P --——}—.

0

'_

Fig. 9. The equivalent eircuit.

The total time average power radiated is given by

~

Re {IV f= 7—7;);-*— log -f' CL - {R‘JD o {9.5)

av]
i
o)1

1 °



: Py 2 im 3 P
0. HExpressicns for (R, S15 2nd P,
From (8,12 ) we find thaet
N = o= i . (Se6)
1OG s F (k)
Llog e K)
Gy
B R el ) )

2ut from (Le9), we have I (~k) = 1/i"(k), sc thetb

()P .
By = =~ .s_,...,;._.‘g_ . 2.7)
10g —8':'
Taking the absolute value
; fari 12
iRIE = = k 3 (908)
b
log ~—
and
ksy = arg M'(k) = Ji(k) . (949)
The total time average power radiated, Py, as given by (9.5)
may be rewritten as follows, using (8.12) for 2 and (9.8) for
52 0 v
Lk
2 ; .
Ptl = m {} i ‘ngz\; ] (9»10)



c. Gain function, §1(8).

- — — — — — o S s s oo

The gain function may be written as Pl(e)/Pﬁ-; where

(@)= Tim 2 5. X
1 ey O ?

where _gav is the time average Poynting's vechor and R is the unit
vector nomal to the sphere of radius r. Using the definition, B,
= % Re {ﬁa}and Mexwell's second equation, Ea=- Vxﬁ/ik)?, we
£ind

= l i ( -é- 1
Gh(8) PrrT rE-)ugo rge {ar(rﬂfb) H(b} . (9.11)

In the limit as r -~ ©, assume Hq) has the asymptotic form
ikr

e
Hq) = f(e) ";“ . : (9&12)

Then substitubing in the value of P, given by (9.10),

2| Ry | . :
e Lim 2 |Hy |2 . (9.13)
Tm?zcz(l_ lRllz) Hm' (b

91(9) =
Sext we consider expression (8.3) which is valid anywhere outside
the coaxial region for g o and lz| = . Introducing the
asymptotic form of the Hankel function and changing coordinates %o

r and 9, we have
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~

IT o0 s p( Pt 2 as
ck » 2 .~ j zo()’b)e”( t. sin6+{c0s0) e

2T VTTr sin & ‘-oo Ho(l)(xa)M*‘(Z;)(k2=é_2)3/h

Por r =y o0, this integral may be evaluated by the method of

stationary phase.‘?’8

Expanding the exponent about the zero of
its first derivative, which is at ¢, = k cos &, the exponent be-

comes

2
ikr | 1 - (&-k cos 8) + 0 {(&ﬂ k cos 9)3}} .

2k% sin? €

The slowly varying part of the integrand is evaluated at &, =

1

¥ cos 8, For the remaining exponential term, let

kr
= (& = k cos &) /—-—-—-——-—-—- ;
* (; > Bkzsinze

00 . _ATT
Goting that e X dx =+\[JTe l s we get
~®
ic» Z,(k b sin @) ikr :
By = —_ (2.1k)
( r

1
)(k a sin )" (k cos ©) sin &

TT Hy

Substituting this result into (9.13), we get

2|Ry|Zo°(k b sin &)
T73 (1= [Rllz)!Ho(l)(k e 5ing) |2 |1+ (k cose)|2sin®e

Gi(e) = . (9.17)

2

Go No Watson, "Treatise on the Theory of Bessel Functions,”
(Ca.mbz*ic)lge Press, Macmillan Co., New York, 1948), pp. 229-30;
Ref. (6).




To check that gl(@) is properly normalized, we require that

1]
277’[ G1(8) sin 9 @0 = 1 . (9.18)

0

Although 91(9) becomes infinite for & = 0 or 7T , the integral con-

verges. See Appendix C for the proof that (9.18) holds.
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Chapter II

The case of a single half infinite cylinder

The problem of a single half infinite cylinder may be stated
and solved exactly, although the problem doesntt properly fit any
actual physical sitvation as may be seen from Section 17, This
problem 1s treated independently of the problem of a finite in-
side eylinder, but the results of this chapter together with the
results of Chapter I are used in Chapter III to obtain approximate
solutions for the case of a finite inside cylinder. No numerical
results are obtained for the problem of a single half infinite
cylinder, inasmuch as the desired physical parameters are not
properly defined,

1, Statement of the problem.

The metallic boundaries of the region being considered
consist of a half infinite cirecular cylinder radius a and of vanishe-
ing thickness, extending from z —» - to z = 0. Coordinates are

chosen as iadicated in Fig. 10,

— ) >

Tig. 10 The keil Zn7%n’’s eiveular c¢iiinder,




s,

13

£ source 1s assumed to exist outside the cylinder for z —y =

ci the form

ikz
SN 1. e (10.1)
¢ 7 e —
ikz :
Hy = éf%-— s (10.2)
and
EZ’ E(b, Hz, H( = O (1003)

For a vacuun (or air), ideal metallic boundaries, time harmonic
Zield components, end axial symmetry, lfaxwell!s equations reduce
%o (1.h), (1.5) and (1.6). The boundary conditions in this case

aZre

Ezzo fOI‘f:&., 7z £ 0 (IO.LL)

and

i_;__.?... Hh = O fo = 8, €0 . ]-O-H)
(f 9(0)4) I‘f Ay 2 ( 2

The radiation condition (1.9) holds also for the present case. We

specify that

k <%—?n s (Uygp = 1.8l 5 2,0 , eee) (10.6)

where Upp are the roots of Jy(u) = 0 or Jy*(u) = 0; in order that

20 propagation may occur inside the cylinder.1

1 Stratton, op. cit., pp. 537-9, Ref. (1).
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11, Derivation of the integral equation.,

Consider the free space Green's function,

S Ak TP :
(B P) = TR (11.1)

which satisfies equation (2.1). Applying Green's second identity

%0 E,(?) and G(F, ), we have

J {G 2, (r2al )E, (B )-E, (7" )( §*2+k2 Yo (T ,?)}d o

Volume

=
SE (I") g {1
- = zZ - F6(PT,r)
= J G(r',r) ._a..;.;.._ - Egz(rt) ....;_i;._._ dat, (11.2)

Surfaces

From equations (1.L4) and (2.1) the volume integral on the left be—
comes merely E, (). For the surface integral on the right, we
treak up the surfaces as follows: S; is the surface inside the
eylinder for z —» -~ ; Sp is the inside surface of the cylinder;
33 is the outside surface of the cylinder; and S}, is the remainder

a2 the surface of the sphere at infinity (see Fig. 11).
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Fig. 1l. The region for Green's second identity.

The béhavior of the integrand on these surfaces may be specified as
follows: on S3, E, = 0 from (10.6); on S5 and S35 E; = 0 from
(10.4); and on S), the integrand venishes due to conditions (1.9)
and (11.1) and the assumption that k = ﬂ + i Awhere X is an

arbitrarily small positive quantity. Equation (11.2) +then re—

duces to
0
Ez((a,z) = J‘ G(a,(p,z-szf) $(a,zt)dat (11.3)
-C0
where
SE '=82+O
Bas2) = - a 5= (p 1,2 ; (11.L) .

= 6 (, ' =gmg
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Applying the boundary conditions (10.L), we obtain the integral

equation
©
E,(a,2) = f G(a,ayz =2t )0(a, 2t )dzr (11.5)
-00
where
0 for z £ 0
Ey(ayz) =
E,(ayz) for z > O
and

O(ayz) for z O
@(a,z) .

.O for z =0

This resembles the Wiemer-Hopf type of integral equation, and may
be solved by a Fourier transform method. The object is to solve
(11.5) for the unknown function, ¢(a,z'); and, having found

b(ayzt), to substitute it into equation (11.3) to obtain EZ(() 58 )

12. Derivation of the transform equation.

The transforms of Ez((a »2) and P(a,z) are defined as

follows:

(e2]

ng(f:é») = J Ez_((a:z)eit?z dz (12.1)

-0
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and

00 o
¢(a: &) = j ¢(a,z) e-*i?,z dz =L[ @(a,Z) e‘i&Z deg « (12.2)

¥ultiplying equation (11.3) by e—»i&z, integrating from z = =0 to
z = +00, and assuming that it is possible to change the order of

integration, we obtain

(5]

j Ez(f 32) o162 g,

=00

o , 0
= f G(a,(,z-z')e'i&(z'z’)dz J O(a,zt)e"12tggr (12,3)

-0 = Q0
Substituting the definitions of the transforms into (12.3), we get

Cylps8) =& (asp,8) B, 2) (12.1)

According to the convolution theorem, this process is only valid
for the common domain of analyticity of the transforms. In par-
ticular, we are interested in the transform equation for ¢ = 8
Applying boundary condition (10.lL) to the definition, (12.1), we

obtain

®
Ei(a8) = f E,(a, 2) itz g, (12.5)

0
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And applying the boundary condition, (10.L), to (12.L), we get
<§Z(&, &) = /g(a:a, &) Q(a: &) s
or merely

&8) =48) Us) . (12.6)

Equation (12.6) is to be solved f'or the wknown function Q(Z,).
The solution, §(¢ ), is then substituted into (12.L) to give
‘gz((’ » &) from which Ez(( »2) may be obtained by teking the in-
verse transform.

In order to find the region in which equation (12.6) is valid,
we determine the regions in which the tmnsforms,é(c )s B(E),s

and 52(5,) are defined., From Appendix D, we have

iprsps ) n By o) sy p) G2

which is defined in the strip |Imé&| < X3 therefors Z(&,) is
analytic in the strip |Im&4| ¢ (. For §(& ), we substitute the
asymptotic fom of §(a,z) for z = -o0 into thé integrand of (12.2).
Since E; is taken to be idembically zero for the initial waves
traveling from the left, only waves scattered from the end of the
cylinder contribute to the E, component for z —» -oco. The inte-

grand of (12,2) varies as

omikzmil2  por 4 oy —0
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Then

O

10(&)] 5[ |0(2,2)| &"Z 4z

-0

is bounded for Im ¢ » - &, since :$(a,z)| remains finite. There-
fore §( &) is analytic in the upper half plane, Im & » -, For
C?Z( &), we consider the asymptotic behavior of Ez(a,z) for

z = +00. The integrand of (12.5) varies as

elkz=i&2  por 2 oy Lo
Then
0
{c‘ZZ(é:,)I £ A[ |E,(a,2)] eN% 4z
0

is bounded for Im& < o, since |E,(a,2)| remains finite except
for z = O where it has an integrable singularity. Therefore
£Z(Z;) is analytic in the lower half plane Im & < « ., These

results are sunmmarized in Fig. 12,
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Fig. 12. Regions of analyticity of the transforms.

It has been shown that a common region of snalyticity exists for
which equation (12.6) is valid, i.e., the strip, |Im&| < (.
It may also be shown that the transform equation (12.4) is valid

in the strip |Im&| < .

13, Method of solution of the transform equation.

The procedure for solving the transform equation, (12.6),
is identical to the previous case of an infinite inside oylinder
given in Section L. We write ,é(&) as a ratio of two fumctions
L*‘(Z,)/L"(Z,) such that L*¥(¢,) is analytic.e.nd has no zeros in the
upper half plane, Im& >—oX, and L (& ) is analytic and has no

zeros in the lower half plane, Im £ < . Then
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” N
(L”"(Z,) d(ay&) forImé& > - X
g(¢ ) = 4 Either expression for |[Im&| < X (13.1)
KL—(&) gz(a, &) for mé& < X

defines a rational integral function. Moreover, if Lim g( &)
-

exists then g(& ) = C; and3
3(e) = o/i*(8) - (13.2)

To find L+(f? )s we apply Cauchy's integral formula,

log & (L) = zsri#lzg“’i(t) it , (13.3)

for the rectangular path given in Section L, Fig, 5. To show that

the contribution over the ends vanishes, consider the asymptotic

form* or (%),

. TTL =
62]¥d.——-2°— 1
- - = for Y 2 @ (13.4)
Za.xa

where Y = Vk®-+t%. On the right Y ~ i% and on the left
Y ~ =it for t = oo; so that the integrand of (13.3) varies as

+3%a— ﬂzi
e + 1
log 258

~+2 for [t] = o ,
ta

3 er. post, Section L, pp. 12-13.
- See Appendix D.
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|In | < K. When € —> 0, the contribution over the ends of

the rectangle vanish. The expression for L+(2;) then becomes

o0 g,&( ;
i 1 lo t)
L =1/17(-¢) = e dt 13.
() = /) = om | 7 [ 208 (13.5)
-0
provided, of course, the integral converges., There is an important
difference between the present case and the previous one of the

infinite inside cylinder. For the previous Greent's function trans-—

form, X (+. k) was finite. Here?

, ;
Bis) = 10— tor || >k
oga@kz-—z,, r i 2

and we may deduce the following relations:

Lim I*(&) exists and equals L*(k) ;
t—-+k

Lim 1 (&) exists and equals L™ (=k) ;
&L —-k

L*(k) = 1/17(<k) ; (13.6)

2

26 VIEET £)

L¥(& ) ~ 17 (-k) log for & = ~k ; (13.7)

and

2

2 pVER(E= £)

(& ) ~ L*(k)/log

for & = +k ,  (13.8)

or L7 (k) =0 .

5

Loc. cit.
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1. Evaluation of L¥(&) by the second method

The first method used in the previous problem, Section
5, does not yield adequate results for the present problem. The
procedure for the present case is identical to the procedure in

Section 6. Considering

a . _ 1 ® 10ed(t)
o log L (C) ZTFiJ o) dt (1h.1)
-0

and breaking up the path of integration as shown in Fig. 6, the

integral over ]_'1 reduces to

= : at (14.2)

where Y ! = \/1:2— k%, Since the integrénd varies as

Za_\(—E._i.
log e 2 1
~ = Ffort—-— o ,
£2 %

the integral diverges logarithmically for T —> co. In order %o

isolate this singularity add a quantity which is zero to the inte-

grand,
T3 .
-2
g o "V Z zaftt- . T
: + o
(t + &) (5« &)

From the result given by (6.5) the integral over G becomes
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Q0
1 TMiglay') .\ _2ay: dt 1
- Jomd | e teat w i) el Y
ZTTiI[ & Ko(ay't) (t+& )2 Wk+g)

(14.3)

ia |4 2L 1Bt ia .. 27
) + an + == Lim log .
i 4'2'_&2 k+ & T 79 k

In order to evaluate the integral over rg close the path with cir-
cular arcs at infinity and lines passing on both sides of a branch
cut which is taken along the negative imaginary axis through the
zeros of Jo(ayn) = 0 at iy = —'imo Since & 1is in the
upper half plane, this contour incloses no singularities; and we
have relation (6.8). For the value of the integral over the arcs
consider the asymptotic form of the integrand. In the lower half

plane for |t| — o0, Vik¥=+> = it; so that from (13.L) we have

-2&-{;_7—7%-
&~ ¢ 2
(£) ~ for || = 0, Imt ¢ K.
2at

Since only the real part of t need be considered, it can be seen
that there will only be a contribution over the arc in the third

quadrant, In the limit as T = ®

(
i I 1og/é(t) 5w __L_j‘
2774 (6 - & )2 2Irs T

arcs

2

The integral over the branch cut is evaluated in an identical

manner to the previous case shown in Section 6. Here the asymptotic

o



58,

form of the roots of Jy(ayyn) = O are given by

Ya =

(nﬂa'jg‘) . 0(1)

The integral over the branch cut is found to yield

o0
ia ia 1
‘ﬁ-"§ S P v B TT tan log 7 T3 (1h.5)

where log @ = 0.5772 *** 4, is Euler's constant. Collecting re-
sults (1h.3), (1lk.k4), and (1L4.5) and combining them according to

(6.2) and (6.8), we obtain

d + d 1
E-ZlogL(&)=azlog P((‘;)-m (1L.8)
ia 277 _2& ooo0-1 X
TI’ log kap Y tan 1c+&}
& ;
Tl )
'n=1 i A Yn - 1%
where
o
» 1 To(ayY®) N _aaye] at
r(§)=eXP 57-7::;‘[ log 77'}, XD il e s (1L.7)

k

Integrating (14.6) and taking the emtilogarithm, we get
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(14.8)

where C is a constant of integration. In order to determine C, it

may be noted that in the strip |Imé&| <

L&) -1 (e) tH-¢8) (14.9)

from (13.5). Substituting the explicit expressions into (1L.9),

we get

7L Io(ye) 1—10(1)(3( a)= CZP(&)P("IZ') 1 K oY . (1l.10)
2 (k2 - &Z)Z Yz
n‘-‘=l n

But from the expansion of JO(X a) as an infinite product,®
2
J ( a) = 1 - l—-
olY I l ‘ >

Equation (1L.10) then reduces to

ZZiH (1)( ) 2 Q(‘;!Pf-'éz
5 @ ¥e
(k2 - g2 )

Considering this equation for |& | =» o, |m&| ¢

€ Watson, op. cit., p. L98, Ref. (6)
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C = ﬂi) T (1h.11)
2a

since P(¢ ) and P(=¢,) = 1 for Re & = ®., We may rewrite P(& )

by changing the variable of integration, x = ay'; so that

P(L) = exp 2—17;—1-‘[ log {(72253) - 1) e-z;:}
(o)

‘ - [ xdx . :
XG 75271{2&5 [x2+ a2(12 = ¢ 2)] ey

If the first integral in (1L4.12) is evaluated by extending the range

of integration and closing in the lower half plane,

AT
(8) =(4/L§1 1, (Vay)e " T) (1413)

00
a Io(x) 2 -2
o |-t [ (282 ) )

0

dx

X
X\/xz-a- sz [x2+ az(kz- &2)] )

Writing L*(& ) in polar form, substituting (1L4.12), (1L.11) into

(1h.8), we get




61,

eeont . (TaRra)\E | ae
(&) = (za(k+z,,)) =TT (1h.1L)

_ 1 Imtan‘l Ko(x) 7 i L a xdx
277 J TITo(x) i+ 1a2 ) [x2 4 2212 - £2)]

And, letting §5(&) = arg {L"(Z, )} ;

k+¢&
0
+ nil %7—%, - sin~l m——%——.?z.> : (14.15)
n

00
1 TrIo(x) 2 -2 & dx |
s | degan Fie e xl (12 2 = .
27T] L(I: \/ Ko(x) ) ° ( Vx? + kza2> [x2 + a,z(kz - &2)]

Evaluating (1l,1kL) and (1L.15) at & = k, we have

f tan™ {Ko(x)]

ka, dx
>< (1- 5 22>_x— # Kakeag)

g
|L¥(k)| = (%) exp | - 25 -

35“

and




o T1ox)\ 2
| 0 -2x -k dax
- —-27_7 log \/1+ mKo(x) ) e G T.===x2+k2a2>x
o

+( 6 )] =L é \/7—7' o0y @) 5Dy a)| (1L.18) '

Xexp - -a‘—C—--g»&-(& fw‘b&n 1 KO(X) 2oz
2 2l ¢ Tr1o(x) [x? + a2(k? - t’,z)]\/x2+-kz 5

which may be used for |&| ¥ k .
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15. Verification that L*( ¢ ) yields a solution .

It is now necessary to show that Iim g(& ) exists. For
& =

this purpose we first consider the asymptotic behavior! of L*(&)
for |&| = o, Im& > 0, Breaking up the path of integration of
(13.5) into two integrals for || < k and two integrals for |t| > k,

and combining, we have

k

i (1)
B0 5 ) m oxp éf e {Tf sy (a”} o
[e)

o

f°°1og {To(a ¥1)Ko(a ¥*)}
+ = ~ dt (15.1)
k =&

where Y = ViZ- 4% and y* = V4%=12. Let x = a ) in the first in-

tegral, Then for [¢ | = oo, ImC,) 0,

dt ~

fk 10g {2 3o(ay )8 (ay))

-2

1 ak _ log {%—j-' Jo(x)Ho(x)}
aG? :[ VPl 22

o

dx = 0(1/¢2) . (15;2)

For the second integral in (15.1) s we note that the major contribu-

tion to the integral will be for ¢ near & . The asymptotic form of

-~ ——

7Levine and Schwinger, cp. cit., p. U068, Ref. (2).
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the integrand is log {-é-}-é}/(tz - QZ),, Removing this variation from
a

the integrand, we have

1
J"Oolog {Io(az’*)iio(a?f’)} at = J‘OO}_?.%_(_E— dt (15.3)
= .

o
t° -
% &

dt .

* Log(2atTo(a ¥ 1 )o(a Y1)
-+ _ é 2

fle

For the first integral on the right of (15.3), let v = -t/i& .

Then for |& | = o, Im& > 0,

oolog( 1) = Oolog-];
I Zat) . _1 log( 1 )I ay +_'_1__f T a4
2 -¢£2 -it ~2ia & J 1+v2  1& | 1478

k
il
-- I 1og(-2la&) (--> (15.1)

For the second integral on the right of (15.3), let x = ay'. Then

J'wlog(Zat To(a Y )Eo(aY?)) "

2 _ g2
e 4

I x log(2/x + k2a? Io(x)h,,(*c)/
(x2 + kPa- a2 ¢,2 )\/x + ke

(o.0]

dx 1 5
const I m = |0 (Z) [15:5)

o}

in
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Collecting results (15.2), (15.L), and (15.5) and substituting

them in (15.1), we obtain

(&) ~ (-i&)E for [t]| - o, mtyo,
S:'Lmilérly we may obtain

I~(&) ~ (i&)% for |4| = ®w, Mm&<O .

For the asymptotic behavior of é( &) and & ,(a,&) wo use the re-
sults obtained in Section 7, since the behavior of ((a,z) and
E,(a,2) near z = O is the same for this case as the previous one.

Thus
D) ~ (1) for [&] = 00 , I & >0

and

E(8).~1/(1L)F for [t D@, m&O,

Substituting these results into the definition of g( & ) given by

(13,1), we see that Lim g(¢& ) = const. Ve are therefore jushi-
& =>00

fied in writing equation (13.2)

16. Integral expressions for H(p(e sE)

As in the previous problem, Hq) is the field component of

greater interest than I From equations (8,1), (12,h), and (13.2)

zo

and taking the inverse transform, we get
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(8.0] .
ckn J. Q/é(a, 24 &) el&Z [’40 (16,1)

= - - d
B 2174 9\6 (& ) (k2 = £2)
=00
Consider the four following regioms:
le 220, €> a 3
2. z >0, €< a 3
3. 240, e>as

and L. z<0,€<an See Fig. 13.

30

I

I

I

I

{\ |
!

I

1.

20

Fig., 13. Reglons for the expressions of Hq).

Substituting in the proper fomm ofﬁ(a, 6, &) for € greater than
or less than a, and using L¥(& ) for z > 0, and,&(&) I E ) FTor

z < O, equation (16.1) gives for region 1

k) ” so(ya)m (P (y p)eih?

a& s (16;2)

H¢ o 1§ + Y
bod &) Y
for region 2
Q0 1) iz
ey [P )E (e ,
H¢ = ).‘,j \[ L+(C,) d&s (1603)
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for region 3

. (1) itz :
T-po Okéz Lr Fl (X F\e d (; 3 (16.)_1.)
Doy aeee )y

and for region L

m °
ok Ji(Y p Jeihz
R ij To({ ) (E) Y i& . (16.5)
=00

These integrals may be reexpressed by closing the path of integra-
tion, in the upper half plane for z > O and in the lower half plane
for z< O, as shown in Fig, 8, After some manipulation, we obtain

for region 1

00

k ?

By = - ;;?;)z _e]??\[ I(aLX();J).%/X £) oz g4, (16.6)
¢ "y

for region 2

e % ¢ i 404
Hq) = 9.15.2 J IO(X a)I1(Yy p)e
2

i (e) y 1% 3 (16.7)

for region 3

i w2 f @ {-‘-:1(X7€ JIo(yta) + (Y " P )5 (Y 9a)}eitpz
b= ar Ky ) Foly )+ L (Y )} (6 )

&3 (16.8)
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and for region L

n g™ [ (g ik
H‘b ck % Z Yol (=it) Z;Ef)iniKn 700y &) . (16,9)

where Y, = VK%~ K.ﬂ2 are the roots of Jy(aY,) = O. Now the nature

of the solution may be examined. Here as in the previous case, the
solution obtained is incomplete due to the lack of continuity be-
tween regions 1 and 2. To obtain continuity it is necessary to add
a solution of the homogeneous differential equation (Appendix A,
equation (A.11)) satisfying the boundary condition, (10.5), In par-

ticular

c e:.kz

TP (16,10)

must be added to regions 1 and 3, This may be seen to be the incom~
ing field which was assumed originally, OSummarizing results: in

regions 1 and 2, Hy is given by (16,3), (16.7), or
b q; 3

ikz

L7 iR {either (16.2) or (16.6)} (16.11)

2L+(k)(0
in region 3, H¢ is given by

e elkz

TR + {ei‘bher (16.h) or (16.8)} s (16.12)

and in region l, Hp is given by (16,5) or (16.9) o
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17. Physical quantities of interest.

Although an exact solution to the problem presented has
been found, the problem itself corresponds to no actual physical
situation. It is not possible to set up a wave of the fom given
by (10.1) and (10.2); since such a wave would be transmitting in-

finite energy along the c¢ylinder. Thus

, .
4 .ﬁ’da=2'rfj -%A d€’m>oo, (17.1)

The situation corresponds to that of a plane wave., The physical
quantities which happen to remain finite are the current on the
cylinder and the total energy scattered back in the negative z
direction. In order to transform the problem into a different
problem which may be of greater physical interest, it is necessary
to introduce a parameter such as the voltage on the cylinder or a
distence L which would replace the infinite upper limit in (17.1).
Since the consideration of this problem does not lead to additional
information with regard to the coaxial structure, it will not be

considered in the present work.
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Chapter III

The case of a finite inside cylinder

The results of the previous two chapters are used in the present
chapter to obtain an approximate solution for the case of a finite
inside cylinder.

18. Statement of the problem.

The metallic boundaries of the region being considered
consist of two coaxial half infinite circular cylinders of vanish-
ing thickne;s, the outside cylinder of radius b extending from
z —-> = @ to z = O and the inside cylinder of radius a extending

 from z = = @ %to z = h (see Fig. lh);

|

./////

—
Fige. 1l The coaxial structure for a finite inside cylinder.

A source is assumed to exist in the coaxial region for z =» - @

of the form given by (1.1) and (1.2). For a vacuum (or air),

ideal metallic boundaries, time harmonic field components, and
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axial symmetry, Maxwell®s equatioms reduce to (1.3), (1.L) and (1.5).

The boundary conditions in this case are

B,=0 and = —Z Hy=0 for

¢ ¢

€= b, 24 0 and 67 =a, z€h, (18,1)

The radiation condition (1.8) also applies to the present case out—

side the cylinder. In order for only the TEM mode to be propagated

in the coaxial region we require that k ¢ s and in order for

-a
no propagation to occur inside the inside cylinder we require con-
dition (10.6). Thus k is assumed to be chosen small enough to satis—

fy both coﬁditions simultaneously.

19, Approximate solution for h large.

The following derivation of an approximate solution uses
only simple physical notions. An approximate solution almost
identical in form but not quiﬁe as good was derived by a tedious
analytical procedure and served to check the results of this sec—
tion.

Consider the solution to be composed of two compoments,

Hy = Hy® + H¢1 (19.1)

where H@o is the field for the case of an infinite inside cylinder
and H¢1 is the field scattered from the terminated end of the in-
side cylinder and therefore corresponds in form to the scattered

field for the case of a single half infinite cylinder. This

q
:
1
.
|
\
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approximation from the nature of the geometry should be best fovr
6 smally, z < h, For € -~y a and z of the order of magnitude of
h, we assume H¢° may be obtained from (9.1L) (which may not be pre-
cisely correct inasmuch as (9.1lL) was derived under the assumption
that (0 -y © ), and we get

¢ » log ;:-: olkz

%O ~ = & (1992)
7 Tog =2 M+(k)(o
og ¥

B ka?

We now relate this field to the incident field for the case of a
single half infinite cylinder as given in Chapter II, equation
(16.10), i'eo,

ct eik( Z"'h)

2() P (19.3)

where a translation of the z axis has been made, Matching these

fields, (19.2) and (19,3);, at z = h, we have

A . log g- Lt (k)elkh
s %’ B 2h ° (15.4)
ka?

The asymptotic form of H(bl for r!' =% o may be derived from equa—

tion (16.2) by the method used in Section 9, to yield

2 ] ikl"
- 077_/\__J°(ka sin 7 )elXr’
Hq) T 2L*(k cos ©')rtsin O

(19.5)

where the primes denote the coordinates chosen with the origin at
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z = h. For r and r' >> h, we then have

8 y elkr Zo(kb sin @)
B = = 5 sin o T14
. 2

H5(1>(ka sin ©)M*(k cos @)

/\.Jo(ka sin @)

(19.8)
Lt(k cos 8)
For 77T £ & £ I L*(k cos ©) may be replaced by
2 2
,é(k cos 9)
A S (19.7)

L*(~k cos @)

from (14.9). This approximate solution, (19.6), gives Hj infinite
for & = 0 and therefore fails for the z axis, since from symmetry
we know I—Iq) = 0 on the z axis,

a. HExpressions for |Ry| and S,.

To obtain the reflection coefficient the scattered field

Hq)l given by (19.5) and (19.7) is evaluated for F =» a and z =y 0,

~ T ° o
2 log b 6 '
B ke?

Assuming reciprocity for the reflection at z = 0, the reflection co~-
efficient Rq for the problem of the infinite inside cylinder may be

used here., Thus, inside the coaxial region for z -~y - oo, we have
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(eikz R Rle"‘ikz) 3 (1 3 Rl)H¢1 , (19 09)

H¢z

=

Substituting H¢1 as given by (19.8) and A as given by (8.11) into
A}

(19.9) we obtain

By = AR1{1 +(1+R )_/\_2} (19,10)

where Ry is an approximetion of the actual reflection coefficient.

Using (9.3), we have
|By | = ]R1|[1 + (1+ |Ry|2-2|Ry| cos 2<5‘1)!_/\.|LL (19.11)

e
+ 2(1+ |Ry|2- 2|Ry|oos 2 81')%‘[./\_{2 cos oéo]z
where

|R; |sin 2 &
Ay = 2kh + 2 85(k) = 28 1 (k) = tan-l o ll::li e 231 . (19.12)

The distence sg is given by the phase of (19.10), or

sin 0(0 N

@08 o ¥ y]./\,.]z(l+ ]Rllz- 2| Ry |cos 26\1)%

ksy = ksq + & tan~1 (19.13)
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b. GCain function, gz(s),

— — — — — - S— . — w— —

To obtain the gain function reexpress equation (9.11) by

letting

eikr

Hy® = £,(0)

and

1 eikr
By = - £1(0) T .

which gives

G o(e) = {lfo(@l2 + |£1(8)]? (19.15)

1
277 Peo

- 2[£,(8)||£1(8] cos (arg £,(8) - arg fl(e))‘} ‘

The total power radiated, Pios as obtained from (8.12); (9.5), and
(19.9) is
o I p. |8
Tyt (1-1R]%)

P . ; 19,16
52 L EX ( )

Noting the expressions for £,(@) and £1(8) as given by (19.6), we

obtain

x%(8) + Y2(8)

By | — (19.17)
R |2)s10%0 | o7 (6)¥(6)c0s ofy

where
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x(e) = Lokt 500 9) s (19.18)

sz_ 15,(1) (ka sin €)! |17 (k cos 8)]

{:_/\_[Jo(lca sin @)

|1+ (k cos 8)]

Y(8) = R (19.19)

and

0(1 = kh + [d'5(k) - J‘z(k cos 8)] - [Jl(k) - Jl(k cos 8)]

+ pon~l (- Jolke sin 9) (19.20)
Ko (ka sin @) /- ° ’

It is not possible to normalize this approximation of the gain
function since sin 692(9) is not integrable for € = 0 ; althouth
it is integrable for € =TT . It may be readily seen that ell of

these quantities reduce to the case of an infinite inside cylinder

1
log h

when h =» o since _/\_ P - 0,
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Chapter IV

The mathematical results obtained in the previous chapters
were evaluated numerically for certain choices of the parameters
involved, The numerical results along with a few approximate
formulae are contained in the present‘chaptéra Most of the graphs
have been drawm using some points which have been obtained by some
process of interpolation. This was considered a necessary time
saver, because of the complexity of the expressions involved, All
numbers which are presented here are considered 4o have at most an

error in the last place unless otherwise indicated,

20. Procedure for obtaining M*(k cos €) and L'(k cos @)

The integrals which appear in (6.22), (6.,23), (1lh.1l),
and (1L.15) for & = k cos & were evaluated numerically by meking
the substitution

g A (26a1)

1-y

which changes the limits of integration from O and c %o 0 and 1
respectively. TForty points in this interval O to 1 were used ex—
cept in the cases © = 8%, 29, and ,5° where an additional ten to
twenty points were used for y near 0, All calculations were done
using 8 decimal places, This technique is assumed to give L
place accuracy. The series in (6,33); hence forth designated as
815 was computed by an approximate formula which gives an accuracy

of about 3 significant figures. Let
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51 (25 xo-e) e) -z n@)

n=1
where
fl(n) = M . Sin—l i e (20.2)
i VL BN
k(b=a)
and
Jo (3 ) g (3:- xn) = o (1:;- Xn) Ho(xp) = 0,
then the approximate formula used may be written
5
8 = 3 fl(n) + {;'SBfl(S) = thl(h)} (20.3)
n=l 63 .
i P 3 N § 1
+¢3°57F1(5) = 2°lPPy(L)p (%(3)- 2 —
n=1 .3
n

where & (3) is the Riemann zeta function for the argument 3, For—
mula (20.3) may be derived by expending f(n) as given by (20.2)
in inverse powers of n end summing the leading term of l/n3. The

valuesl

of S; as given by (20,3) are given in a supplementary
table at the end of this chapter.
Similarly the series in (1L.15), henceforth designated as

S5, defined by

lof, W. Mercuritsz, "Wave guide Handbook™ (McGraw-Hill Co. New York,
1951) Appendix, Ref. (10),
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00
So(ke, ) = 2 fo(n)

n=1
where
2]
Bofu) w S0EE L 1 e (20.L)
nTT «V/(:ﬁn> 2 .

wo | = 5in?@

ka
and

Jo(Xn) = O 5
were evaluated approximately by:

6
So & I fo(n) + ’}3 2.676,(6) - 53f2(5)}
n=1 1

{3 63f2(6) 53f2(3>} ((3)— z -13

n-_-:l
ka cos € S
= BLEe 2 > (“”“nilﬁ :

This formula may be obtained by expanding (20.4) in inverse powers
of n and summing the temms in 1/n® and 1/n3, The values of S as
given by (20,5) are given in the supplementary table at the end of
this chapter.
The numerical results for |Iff(k cos 8)], 5\1(}: cos 9);

|1t (k cos 8)|, and cvz(k cos ) are listed in Table I, in case they
mey be of value for fubure approximations of the case of a finite
inside cylinder., A numerical check on the integrations was afforded

by the fact that there is a relation between I*(kcos€) and L*(kcosé),



Teble I. Valuestof 17+ (keos®) and L+(kcasd).

€0

2
b k(b~2a) in |t (kcese)| 51(}:008‘9> |1+ (kcos®) | gz(kcose)
& degrees

1,25 o | o L7238 0

»30 »38537 .3355
1,20 22L52L .7831
3,00 009969 . 7605
2,00 0 »83255 0 ) 0
.12 1.36692 211261
.15 67LT7 .2282 1,293L9 L6227
30 .61703 .3563 1.0L835 »8020
U8 86695 »7185
.60 52500 o5L66 . 77696 -7785
5 525 o5L65" 77 - TT8L*
2,0 .5251L -5LB0™ LTT711 = T781%
8,0 .52628 .5lLho* . T79Lh <TTT0%
15,0 529015 .5l16 . 78573 s 1127
30,0 51280 ,5261 .81278 L7670
L5,.0 .565L9 11990 86040 .7506
60,0 59796 .L583 93250 7237
75,0 64051 .L017 1.03470 .6821
90,0 .69283 .3269 1,17hL1 .6223
105.0 .75358 .2324 1,36109 .5387
120.,0 | .8200L4 JI179 1,60757 4278
135,0 ,88836 L0149 1.93543 .2871
150,0 .95511 .1621 2.395L8 .1136
165,0 1,02277 | =-.3197 3,17060 .1032
172.0 1.06247 39673 3.880Ll) 02330%
178,0 1,12331 L7617 | 5,5071 Lozl
179.5 1.164 «5070% 1:20 -L937*
180,0 1,32019 -51i68 ® .7785
1,20 0 »38618 ,7923% 118998 -9L87
o5 .3862 . 7923% 211900 -9LB88*
2,0 . 38625 ,1921% -L19011 -9L91*
8.0 .32754 JJ912% 119170 -9500%
15.0 39099 .7903 Lol 09511
30,0 -L0601 .7833 251571 .9578
L5,0 .L3301 .7688 »55233 .9675
60,0 L7506 o Th21 .61322 .9760
75.0 .536L86 .6955 ,71085 .97hL9
90,0 62195 .6191 . 8610l .9ko2
105,0 . 13L75 .5027 1.10017 »8803
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Table I, (Continued)

b 9 . . .
= k(b-a) degrl”ees IT,I+(koo§G)I é‘l(kcose) | L* (kcos®) | §2(kcos@)
1,20 | 120.0 87335 .3388 1.41979 1516
135.0 | 1,02821 1261 1,95183 | 5543
150.0 | 1,18226 1295 2.67TLs | .2868
165,.0 1,32228 -L160 3.867h | =.0566
1720 1,391L2 +D5T6% L.9L20 =,2588
178.0 1.19089 6932% | 17,4293 | -.503L
179.5 1,557k ~TLOT* | 10,06 =.62UT
180,0 1,79L90 .7923 o =, 9187
2.40 0 s21122 29365 22727t
25 211 09367
240 21125 <9378%
8,0 S21370 ' 930l
15,0 .21293 ,9L19
30,0 ,21840 .9595
L5.0 .22897 ,9938
60,0 -2L8L7 1,0515
1540 .28725 1,133¢
90,0 » 36935 1,2116
105,0 .535L5 1,2082
120,0 ~82799 1,0530
135.0 1.25871 o1 336
150,0 1.7711L -2787
165,0 2,2112 +26877
172.0 2.4274h oSl L
178.0 2.8L65 . T89TH %
17945 2,79 .8668% :
180.0 | 3.2816 09365 |
3.00 0 015639 0 1186 :
3,501 © , 1,11927 0
30 »75306 | »3820
1,20 i .L5883 »8080
3,00 .18380 .7121

t The values of ]L“-“(kcos@)l and gz(kcos@) are listed for g = 2.00
in order for the columm headed k(b-a) to be identical %o ka.
*Interpolated values

toalculated from (1L.16), but is not applicable to problems
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2l. Results for the case of an infinite inside cylinder.

The numerical results for Chapter I for the physical
quantities of interest are given in this section.
a. Output impedance, G1/Yq.

The output impedance,

1-|Ry]

. ha 21.1
1+ Ry ° ( )

Gl/Yo
given by equation (9.L) and (9.8), where

Yo=§1%:

log %=

is plotted in Graph I as a function of k(b-a) for three choices
of -:—)‘. Numerical values are given in Table II for a.l = 00,

. b
A further check on the values of Gy/Y, :F'or the case — =2

was obtained by evaluating |M*(k)| using the first method, equation

(5.6). The actual express_ion used was derived by integfating by

parts to get
k
|+ (k)| = V1og :2- exp -7-_%2- J‘log s - i (1])' >
) lﬂd (bx) |
= 1 & (21.2)
x
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subtracting out the integrable infinity at x = 0, and further smooth-
ing the integrand by subtracting the asymptotic form of the Hankel

functions to finally obtain

b \ 1 L A b
|M+ (k)| = Vieg < exp = k(b= a)l}/}-—-— F== 7 log % = log —

k(b=a)
L B Log (EBra)s P (b= 8)2- x2 1
2 - 1) /bx \|2
m 0 % HO( )('5':5)
- L /.
(1) faz ) |* 2
I E)
1o 2k(b=a) 1 »
1 L g'Z».Lll:;é.l
E Kol o)
NE ﬂbx
i 7 dx
i - = ’éw X ':m Le (2103)
1+_g__1 5 2(b-a) x
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The resulting numerical values of Gl/Yo are also listed in Table

II. The integration in (21,3) was carried out numerically by choos-
ing 2li to L0 points, Six rather than eight places were used in this
computation,

An approximation for k large or k(b-a) > 1 may be obtained by

considering |1 (k)| as given by (6.2L) and expanding the radical in

the integrand for ka and kb large to get

k(b=#)

1+ (k)| = (—%—) %\’log% o- 2 (21,L)

Foe) .
o

Using (14.13) and (1L4.12) to evaluate P(0) and expanding the Hankel

function for a large argument; we find

1 1 ‘
Ak ¥ O ((alc)z) (21.5)

o
= ©xp 7—%—f log ’T_I.__Io(x) - i} ox B e 3 O [k L .
1 Ko(x) x2 1+ k2a2 (ka)

(o)

Taking the absolute value of (21.5) and letting k =» oo, we have

Ko(x) . 1T
-1 -——Q—-L 2 w woeoe o
J x ‘tan ( e dx el (21.6)

©
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and substituting this result into (21.4), we obtain

- & -k(b—&) + .._.1‘..— -}——l : o
[Rll 4/-;_ e 1 25612 (bz a2>+ 0 ((ka.)n> > (21.7)

or epproximately

IRyl = 4% skloa)

2
For k(b= a) 2 .3, (21.8) is accurate to about 3(—} - l) per cent

2
and for k(b-a) 3 1,2, (21.8) is accurate to about (;:— - 1)' per

cent. The approximate expression for Gl/Yo corresponding to (21.8)

is

ﬂ o~ tarh Lot + 3 log = o (21.9)
Yo 2 L a

For k small, (21,2) is considered; since the greatest contri-

bution is near x = 0, we make the substitution

g
log g = =~ log 2k
x x

and replace the Hankel function by its expression for a small argu=-

ment. Integrating we obtain
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l\._l
+
4
D
o
R
B
U'N
»

—%(log ﬁka)tan"’l (737 log 2%;) | (21.10)

for k < 1.

—— —

The distence s; as given by (6.25) is plotted in Graph II

s
a.s the ratio -Zgb*—]-'—-i for three values of .13_,, The numerical values
- g a

are given in Table II for -2— = 0.
For k(b=-=a) large, k(b-a) > 1, we consider the imaginary part

of (21.8) and make the substitution

_x_zfio_m N, =]
x4 ‘k’?'a.z = Vx? + 1Ra? (ka)GJ

to getb




0 2
2 lo % & 77 Lo{x) o2x| | 4 o 2B £
T & ¥ (x) 2. 2.2 X
A x“= k%g
: 0 . (21:11
= + e i
8 ka (ka)2 )
Then from equation (6.25) we find
k(b= a, 27 e
kgq = 10p ~—e———— . 54 (& 21+12
! 7 e Bx(b-a) S1.(k) ( )

fOI‘ k(b‘-a) > 10

c. Gain function, é?l(e).

- - —— . —— — O — — o

The gain function é}l(e) as given by (9.17) is plotted in

Graph III for the case g; = 2 and three cholces of the frequency
k(b= a), The numerical results are given in Table III for i? = o,

From (6.,22) we may obtain the approximation

s \ %
L 2 &
1+ log ey
& kb
R I e LG G R
1+ log2
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for & = 0, Substituting this result into (9.17), we find

G, =
log Z

2 \ % L 2 2 \%
1- |7 |90 [ 1+ —= 2141
( 1% (+ pme) "7z log p1cae>

for & = 0. Similarly for & ~»T7 , we find

(21.1L)

=

Ly 2 2
T, YoiB e e b
172 ~°% Bo(ir-e) log —

|1t (k cos 8] =

14.;%35 log? 751;35%71255 () |
so that
G104 ~
IRy |2 1og 2

3 5 r (21.15)
77*3 (1"]R1!2)(W—9)2( hlogﬁkb(ﬁr_gb ( hlogﬂwl’a@? 9))2 ;

=

for & => 7T »

22. Results for the case of a finite inside cylinder,

Since the numerical results for this problem are obtained
from an approximate solution, a proper evaluation will depend upon

agreement with experiment.
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a, Output inpedance, GZ/YOO
The- output impedance as given by (19.11) and (21.1), |Rs]
replacing [Rli is plotted in Graph IV as a function of ka for three
choices of the parameter % for -:—- = 10, in Graph V as a function
of ka for three choices of the paremeter «2— for E— = 2, and in Graph

VI as a function of -S— for éb—- = 2 and k(b-2a) = 1,2, Iumerical

values are given in Table II for -s— £ oo,

The procedure used in Section 21 to obtain an approximation

for |u+(k)| for k > 1 may also be used here for [L*(k)| to give

L+ (k) & (/lﬂl g B |13 s (22.1)

S

Liek 512 (ké")—é

or simply

I
o
2y

4 0 e,
LH(k) o (’ng e &,

Substitute (22.2) and the first part of (21.L) into (19.L), we

obtain

2h | Lkb
p kol

B % k(2a-b) '
log — “ . Dxeermag
]AI ~ E__ (:LZ.) e 2 (22.3)

log

Neglecting the squared terms of [R,| and [/\_]? in (19.11),

we obtain
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T log —
By | = A/-g- ok(b-a) 8k cos & . (22.1)

The phase angle O(o which is given by (19.12) cannot be conveniently
simplified. The expression (22.l) gives }RE,] as ]Rll plus a

correction term which clearly goes to zero as h = .,

b. Distance S50

— v W— v -

s
The distance sy, as given by (19.13) is plotted as c 2 ;
-8

in Graph VII as a function of ka for three choices of the parameter

E or % = 10 in Graph VIII as a function of ka for three choices

a
of the parametef -Ev for -;-:i- = 2, and in Graph IX eas a function of E—

4

b ;
for o i 2 and k(b=a) = 1.2, HNumerical values are also given in

Table II for -;i # 0.

As in Section 21b, we find, using equation (1L.17) that

- 277e Y e 1 2
log m + 82(1) e + 0 (TE;% (2-405)

e
gz(k) = 18_ %

3IE

for ka > 1, Expanding the arctangent in (19.13), we obtain
xsp = ksy + 3|/ \.|2 (1= |Ry| cos 2 §7) sin A,  (22.6)

for ka > 1,
Expression (22.6) gives ksy as ksq plus & correction temm which be-

comes zero for h = ®



c. Gain funetion G5 (8).

G o G G- — G s

The gain function Qz(e) is plotted in Graph X as a func—
tion of € for -:zw = 2 and % = 10 for two choices of the parameter
: k(b-a); and in Graph XI as a function of & for % = 2, and
k(b-2a) = 1,2 for ﬂzree choices of the parameter %o The numeri-
cal values are also gilven in Table IIT,

For 8 = 0, we let

|1+ (k cos )] =~ |L*(k)| . (22,.7)

Then from (19.19) and (19.5),

log L
Y(8) = — ; (22.8)
g Zh = |1+ (k) |
@ka.“
and neglecting Y2 (8) ); we obtain
1- |P |2
«:92(9) =~ 1?2[ 31( (22.9)

2 log P— cos ok

I =
92{“.},& log? Biea e}‘*{ L; log? &%5}‘*

- Ifx’gl%l%ﬁz

for 8 = 0 where gl(e) is given by (21.1L). From symmetry we know

that the field must be zero along the z axis; so that approximation

(22.9) may not be adequate. If as in Section 19 we comsider H¢)

to be given by:
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¢ 77 log )
& I L oilr cos & L _LTU) kx| (55 1)
o i ‘
2 log 2 i*(k)r sin 6 L+(Xk c‘-os o)

6 el

for the region of the z axisy, z =~ h, we find that

1 log =

G,e) =

— (22.11)

B s

8T (1- ]Rzlz)log;

for & = 0, which seems to be a better result qualitatively. Con-

sidering the definition of L*(& )/L™(& ) ond (13.5), we find

1+ L logz -
T2 BEal7 - o)

1+ (k) |

W+

P

|L*(k cos 8] =

(22.12)

for 8 =77 . Substituting (22.12) into (18.17) we obtain

R/RORS 31<e>

IR ]
L log s (k) (1+ —l-fz- log? -—-——2-—-—5% cos Xq
& 7T 1@1&(77’-9) (22.13)

3 o Byes P 12 2\ v o2
Tr-(1 I*‘Zi )1 gﬁkagé 7T2 log ﬁ3€bw-9)> (77 )

for € = 77 where (21.15) is used for 91(6‘. This approximation
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should be adequate for ,.%.' large.,

For € = 90°, (91(9) and Cg?(e) may be expressed more simply

by noting that

and

T

5 o(ka)Ho(l)(ka)

LH(0) =

from equations (6.22) and (1L.18).



ol.
Table II, Values of G/Y, and ===

(b-a) °
b h ' S
= 7 ke, /Y, -y
1,25 [T 0 0 ®
1,200 .20081 1,1185
L, 800 57540 6526
12,000 91473 «2535
1000 0 0 [0 0]
1,200 .20115 1,1185
2,00 ) 0 0 ®
.025 »1096 1%
.120 .188L3%
150 »20709 1.5215
« 300 229093 1,1877
22909 1%
-600 0143092 ,9111
L3090 1p*
1.200 | .6L588 +6603
-6L590%
2,400 .87905 »3902
3,000 .93183 021495
+9318lp*
15,0 1.200 .63638 26115
14.5 .67L3L .6296
14.0 .67L68 »6911
13.5 .63606 .7089
13,0 ,61002 26674
12,5 1 .62532 +6160
12,0 -6692L .612L
11.5 .68555 .6807
gE* 10,0 i 66511
11.0 61548 7211
10.5 .60617 .6836
10,0 o 0 ©
a5 222830 1.5682
30 +26030 1,1L97
.60 .39267 .8T05
1.20 62005 06081
9.5 67326 »5998
9.0 .69571 .6852
- EZT'E +10,0 .669043
8,5 .64528 T8

*Values obtained by using the first method, equation (21.3).




Table II. Continued.

b h s

a 2 ka G/Yo ey
2,00 8,0 1,20 .59526 .6905
T:5 ,60001 »6092
7.0 »6633L 5670
665 072001 .6611
6,0 .66396 7722
5.5 58007 w12 T

S.O 0 0 (o]
.15 .19918 T.7381
.30 .34250 1.2291
60 » 36001 ,8813
- 1,20 .56118 .6125
L.5 .63519 »5030
4,0 . 77963 ,5695
3.5 . T0877 ,9095
3,0 .50507 .8385
2.5 . 37967 6207

3,50 o 0 0 ©®
.12 o 3T6TT 12733
.18 + 11280 6733
1,20 9LTLo «23TL

10 0 0 o0
012 .Lo81s. 1.5713
L8 86137 . 7650
1,20 .8LTll .0180




P k(b-a)= 0.6 1.2 2,4 006
in .l.l. =00 00 o 10
degrees a
0 0 [o's) © [e's)
2 Th,652 89,852 124,39 1722
8 9.3066 12,3285 18.83L 6718
15 3,8636 5.3020 8,0728 .5875
30 1.5255 2.03L8 2.5232 »5285
L5 .89016 1.06L21 .89371 .14380
60 60638 .62125 .31L80 3587
75 L5473 .39273 .11789 .29l
90 .37023 .27150 .054163 .2458
105 »32851 220935 .033926 02132
120 .32242 .18382 .028347 .1969
135 36069 218874 ,029573 .2007
150 49273 23998 .038368 .2L35
165 1.03535 116359 .072869 oLh32
172 2,283L 95637 .1L326 8975
178 16.315 86,0307 .79251 5.698
180 (a3 00 [e2] 00
6 k(b-a) = 1,2 18 142 1.2
5 h 7 T7
in == 10 10 + == 10 + 10 -
degrees & 1s8 2.0 %5:
0 @ fe's) 00 m
2 38.01 5526 268,17 396,50
8 » 3082 48,95 28,47 25,36
15 25722 16,67 11.6L 6,70k
30 .8095 14,693 Iy 3l2 1.275
L5 6777 1.976 2,199 23
60 .Li896 .9906 1,229 -22143
75 03352 5739 .Th21 1453
‘90 22300 3861 4919 »10965
105 .16L8 .30L5 .36L2 09527
1 120 .1264 »2817 3047 ,09809
135 .1081 3083 2919 »12362
150 01122 21158 « 3351 .1989
165 .1836 -839L 25613 . 11888
172 »3592 1,764 1.0682 11275
178 2,145 11.LL 6,197 7.9
180 (o'0) 00 (v} (e's)
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Supplementary Table. Values®of S and Sg »

b .9
- k(b-a) in =8y -8,
degrees
1.25 0 0 0
30 .0002947
1.20 .01237
3.00 - 3199
2,00 0 0 0
Jdg .01829
.15 .0003859 .02288
.30 .0008661 .0Ls03
18 .07L58
.60 .00281L .09432
15 ,00290L ,09149
30 ,003060 ,08297
L5 »003012 .06882
80 ,002197 .oLoll
75 .001432 .02589
90 0 0
1,20 0 .01480 .2087
15 .01583 .2009
30 .01804 21920
L5 .01916 .1667
60 .01682 .1255
75 .00999 06803 |.
90 0 0
2,10 0 .1293hL
| 15 213972
30 .16L88
L5 .18715
60 .17952
5 .11603
90 0
3.00 0 . 3674
3.50 0 0
030 | .002358
1.20 ,02117
3.00. JL1Th

*It may be noted that §,(8) = - 51(77-#8) and szos) =
-35(TT-9) =

108.
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Appendix

A. Derivation of the differential equa‘c:i.ons1

For rationalized }.%.S. units and +time harmonic solutions in
a vacuum (or air) bounded by ideal metals, Maxwell's equations?® re—

duce to

il

. .% -
vx?::ncz,n, VeH=0 - (A.1)

(=33

VX?= ilCV_E), V‘ =O (.A.c2)

subject to the boundary conditions
-
ZXE=0

2°‘3=0

where the symbols have their conventional meaning. For a set of
differential equations suitable for cylindrical coordinates, con-
sider the following procedure. Taking the curl of (A.2) and sub-

stituting the result into (A.1), we obtain
- -
VXVXE-K¥ E=0.

Exemining the z component, we have

(V2 + K¥) E, = 0 . (A03)

For circular c¢ylindrical coordinates where E, is axially symmetric,

i.e., not a function of the angle @, (A.3) becomes

p, E. Spencer, Journal of Applied Physiecs, April, 1951, p. 386,
gives a more detailed analysis of the separation of field varia-
bles, Ref. (7).

2stratton, op. cit., p. 23, Ref. (1).
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(A.L)

The transverse components of equation (A.1) may be obtained as

follows: .

2, % 4 [V +73, -;%) X (B + B,2,) b = ik&d, X (B + Hyey)
L

which reduces to

P 4 :
oL =
_..Z.EE = W4E, - ik&d, X Hy (A.5)

where the subseript t refers to the transverse components and ?z

is & unit vector along the z axis. Similarly

%}_I_"‘ - Vgl + 173, X By (4.6)
Z

Differentiating (A.5) with respect to z and substituting the value

a
of 5 given by (A.6), we obtain
3

2 ‘ ' '
2 s 2| % wy 2%z, k& Ve X (3,H,) o (A7)
552 2z

Considering the € component and the case of axial symmetry, (4.7)

becomes
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2 2q
2" 2\ .25 (4.8)
2 52 ¢ a(gaz

Similarly

2 - e, 9H
(j2+k2 Eb“‘ik)zvtx(?zEz)*‘vt“;'zE' (A.9)
z

Considering the Qf component and the case of axial symmetry, (A.9)

becomes

. 2 = ik —-fz. A.10
92 Hﬁ (’ : )

Equations (A.L4), (A.8), and (A.10) are the desired set of equations.
A similar procedure is very useful in the more general problem
where sources are included.,

The differential equation for H,d’

2 1 3
(V = %—2 + k>£{¢ =0
or for the case of axial symmetry
1 2 2 \_ 1T 2 2
- — ) e — g e K = 0 A.11
e (05e) T

is derived in ‘Stra{:'bon3 by considering the electric type Hertz

‘ —
polarization potential, TTT .

31bid., pp. 3L9-50, Ref. (1).
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B. Derivation of the Green's function transform, 77/(&)

The Green's function of interest is a soclution of the differ—-

ential equation

2

a” 9 [3 zt - g =g! -t
;,,..536+Z (e, o' 3 o) = —Céﬁ-@d’(z zt), (B.1)

satisfying the boundary condition
K(a, e': zy 2') = 0 (B.2)

and the rediation condition for ¥ = ® s e > a,

o(eiki?-?'{
K BN . (B.3)

Multiplying equation (B.1l) by 0182 ang integrating from z = - o

to 2 = + ®, we get

®
.i) + 12 -&,2 gi%s! J K((, 6', z, 2! )e-iz'zdz
=00

464

Z= 4+

+ eibzt|g-itz 2K + ibLx ) ﬂﬁ;@ R (B.4)
22 VAR o) 6

The bracketted team vanishes if k is assumed to have an arbitrar-

ily small imaginary part ol end |Im4| < (. From the differen—

tial equation (B.1) and the symmetry condition, K(e, e*, Z, 2!) =
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K( e',f, zt, z), we may deduce that

K(C,(Y, zy 2%) =K(€, 6’, z-2%) ,

Then the Green's function transform,
2] -Z'( .
H(ps ’:&>=I K(ps pts 2=2)e 52 )a(s21) , (B.5)
cren @] Hee

is defined for [Im QI < Ko The differential equation becomes
L 2 2 18 s g2 ' .-l . (5.6
7 5 ((’a( L (s o' 6) -——-(f-%——@-— (5.6)

The homogeneous equation, for 6 ;’ 6?, may be solved, satisfying

the boundary condition 7 (a, (o', ¢) = 0, yielding

H(gspss&) = Wyps 0y ) D)

where

Zo(Y f<) = 721 To(Yalo(Y ¢ ) = Mol Ya)do(¥ ¢ )} (B.8)

where Ho(l) is the zero order Hankel function of the first kind;
Jo and N, are the Bessel functions of zero order and of the first
end second kind respectively; Y = V2 = £,% 6, refers to which—

ever is larger <o or (9', €< refers to whichever is smaller (o or

(a!; and ¢ is as yet an undetermined con»stant.,hr This particular

Ll'E. L. Ince, "Ordinary‘Differential Eqﬁations,“ (Dover, New York)
p. 116, Ref. (8).
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choice of cylinder functions has been made in order to preserve
the sense of an outgoing wave, To find ¢, equation (B.6) is multi-

lied by and integrated from p' = 0 to pt + 0, to give
P ( 6 6 ’ g

€'+O
s,

¢'°

Making use of the values of the Wromskian for two linearly inde-

pendent solutions to Bessel's equa-l;ion,5 we find

o = /8, (ya) .

Then

5, (D(ye,)
Ho(i)(Xé-)

7’((@,@,5)= Zo(Y <) - (B.9)
The general behavior of X (b, b, &) EJ((%) in the & plane is
illustrated in Fig.15. The asymptotic behavior of (&) for
|& | = oo is found by substituting the asymptotic forms of the
Bessel functions in (B.9) which gives

gy = - 2;b (21¥(b-2) - 1)

Thus A’(& ) is bounded in the second and fourth quadrants but be-

comes infinite in the first and third quadrents for |[£ | = o

‘ : -
5E. Jahnke and F. Emde, "Tables of Functions with Formula and
Curves," (Dover Publications, Wew York, 1945), p. 1lly, Ref. (9).
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i |n]> ol » ¢,~plane ,
1
Y zeros of ?7/ I?ﬂ-—?oo
phase of Y
=
+k J/ 2
£
______ >....-_._..__JL_.;_._>.__._._,____ ¢,
i path for the inverse
2\[/ transform
gt -
phase of ¥ ¢
| zeros of 97/
[H =

Fig. 15, The behavior of A (&) in the cut & plene.

The value of 7‘7’( &) at the branch points is found by substituting

the values of the Bessel functions for ¥ = 0 in (B.9),

1-2:1— 10 ..‘..‘;2.’..—
D) = 1am | TR PRI 2
¥=0 2 1- L log 2 T

TRy

g—-——

pY®

2 2

+«—10gﬁxa

b
T log 3
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where log (3 = 0,5772157 e« is Buler's constant. It may be shovm6
that Ho(l)(x) has no zeros for =77 é arg x € 77 which is larger
than our region of interest; therefore A (&) has no poles in the
finite & plane. The factor Zy Y b) gives A (&) an infinity of

zeros on the imaginary & axis for ])7 | > K.

.

6Wa:l;son, op. cite., p. 511, Consider K (x) = T_éf& Ho(l)(ix), Ref. (6).
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Proof that$-(8) is properly norralized

Ce.
This proof was civen by Harold Levine in o private communica=—

tion to us. Consider the integral

.

j A(&) a& (6a1)

1+ 6)]202- 8, 2

+]

.
where the integration contour ¢ is shovm in Tip.16({closed by a cir-

cle at infinity).

m
e’11:. e 2
VN < - c
L] »
)7 N
_Ti
T =k 6 & +X

The integration contour for ({.1) showing the

fZ 22,

phases of \k

Fig.l6.

¢ hove, using

~

Since the contour incloses no singularities, W7

(3.1,
log % log %

0=2TTi - T 24 o= e

2k |1 x| 2kfir ()1

.
(™ yn)| Zo(¥p) az

M(ya) 0@ ya)| ) - 67
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=k =00 |
J J (&)
(&) PR - £2)

A& o (Ce2)

-00 below cut =k above cust

Substituting in the explicit expressions for A/(& ) and |MH(& )]

and using the relation

£, (x)

s ff L2 ® x ton~t =,-7>»—T—¢0 -

T (1\ .'-2-. ( IO X‘.‘_
Ho'" |2 © Y'a) exp

. + kPa” [/&2 + kP82 4 La~i€ ]

dx

Co(x) T
i X
34 o0 bl tan“"l{ ﬁ-ho )
—cmes I x/
= - IIO(l) e ° X’Q exp | f 2
V%2

7 ax
+ 1292 [\/3:2 + k282 + & a + i€ ]

for € = 0, and similarly for b, it may be shown that the last
two inbegrals in (C.2) cancei, ie€oy 7‘((8,)/{3’;*(2;)[2 does not
change across the cut.

Chenging the variable of integration,

&=k cos 8, equation (C.2) becomes

: 1
O=72;]-" . +!R1!
k {Rl}

Ll 7,%(kb sin €) sin @

A
+ St —
“ e« |HO(1)(ka sin €))% (k cos 0)]% sin®0

which checks with (9,18) when (9.17) is used for G1(8).



D, Derivation of the free space Green's function transform,

éﬁpb,ﬁ%)&)
X T

The free space Green's function is

klr—r l
oF, Pr) = S Beld
(I°9 ) hﬂ'?n??i ( )
which satisfies
(7 + X2)(F, T7) = - S(F - F) (D.2)
For the present case of axial symmetry (D.2) becomes
12 J 22 . 2le -
e (0F) Sa e
= 3(2—2')3({'\)0’) , (D-B)

¢

Iultiplying (D.3) by e~162 ang integrating with respect to z from

-00 to +00, we get

© .
L 2 2 + K2 ‘[ Ge=ibz g, (D.L)
C ¢ ((9 af) Yoo

o
2¢
+J‘ o1tz 2 dz-—-—%—-—-@-—lj‘ S(z=2z21)e” ~ikz 3,

Q0

120.

The second integral on the left of (D,lt) may be integrated by parbs

to yield
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f . Z= 4+ 00 © .
[ (a‘___(% + i&G) e‘lg’z:’ - Qz J‘ Ge~i%7 g,
2z —_—

-0

- The bracketted term is zero provided |Im& | < ol where k = p + ik,

Defining the Fourier transform

(©0)

/&(65 6': £ =f G(Ca e': z= Z’)e-‘j'&”'z dz
~0
=0

equation (D.L) becones

L L2 2\ . . 1 - M ¥
X @95)*3‘ Aes e 54 o)
where X = Vk? - &%, Solving the homogeneous equation, _

Aies et 8) = oanly p Dy e (D.6)

where the Bessel functions have been chosen to preserve the sense
of an outgoing wave, IMultiplying (D.5) by e and integrating from

6' - 0 to 6’ + 0, we get

=pts(
f@%/&(@("a@ §=§'—0 =-1. (@)
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Using the value of the Wronskian of two linearly independent solu—

tions of" Bessel's equation7, we find ¢ = éﬂ o Thus

T7i 1
/é(€> 9(0< AR = Jo(Xf< )Ho( )(Y<’>) ° (D.8)
Fig.15 in Appendix A shows the cut & -plane and how the phase of
Y is chosen.
In particular we are interested in/&(a, ay,&,) =A(&). The
asymptotic behavior is found by substituting in the asymptotic

form of the Bessel Functions,

21y -1

,&(&)212&1Y 2 2 4 1)for 4] = o . (D.9)

For ¢, approaching the branch points we have

i 2
ey =12 | 10g for |6 - k (D.10)
2 (38.
where log ﬁ = 0,5772 °°° is Buler's constent, obtained by consider—
ing the Bessel functions for a small argument, Thus/&(&) has &

logarithmic singularity at the branch points., /& (&) has zeros at

t'n Y )’nz-kz where Jo(Y p2) = 0 .




