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Weber electrodynamics predicts the localized wtipolar 
induction observed by MUller and Kennard; whereas the 
Maxwell theory, based upon closed current loops and the flux 
rule, fails. The Weber theory for high frequency fields 
predicts a zero self torque on the Pappas-Vaughan Z-antenna, 
as observed. In contrast, the Maxwell theory predicts a 
sizeable self torque which is not observed . 

Key words: electrodynamics, Weber versus Maxwell, wtipolar 
induction, Z-antenna self torque. 

1. INTRODUCTION 
This is part II of a paper presented in three parts. 

Part I (Found. Phys. Lett. in this issue) presents the Weber 
theory extended to fields and radiation. It presents the 
steady-current experimental evidence for the original Ampere 
law and Weber electrodynamics and the failure of the Biot-
Savart law and Maxwell theory. The present part II shows 
that the Weber theory predicts the localized unipolar 
induction experiments of Mil11er and Kennard; while the 
Maxwell theory again fails. High frequency field effects are 
also correctly predicted by the Weber electrodynamics : 
The observed zero self torque on the Pappas-Vaughan Z-
antenna is predicted by Weber electrodynamics; while the 
Maxwell theory predicts a sizeable self torque which is not 
zero and which is not observed. Part III concerns the impact 
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of Weber electrodynamics on mechanics and gravitation. 

2. WEBER THEORY OF UNIPOLAR INDUCTION AND THE 
EXPERIMENTS OF MOLLER AND KENNARD 

M..tch confusion exists today concerning unipolar 
induction, because the traditional theories of Faraday and 
Maxwell give equivocal answers or no answers at all. These 
theories do not agree with the important experimental result 
of MUller [1] and Kennard [2). The Weber theory, on the 
other hand, being based upon the force between point charges, 
yields unequivocal agreement with all of the experimental 
results. 

The only induction law provided by Maxwell theory is 
Faraday's law of electromagnetic induction, 

emf=- cell/ate, (l) 

where emf is the electrorotive force induced in a closed 
loop and ell is the magnetic flux through the loop. It is 
frequently attempted to use this Maxwell's flux rule (1) for 
all induction phenomena; but this type of induction is 
limited to the case of a changing magnetic flux through a 
cLosed loop produced by cLosed current loop sources. The 
more general Weber theory predicts induction where no 
magnetic flux can be defined and no dosed current loops at 
all need be involved. For example, unipolar induction 
involves no change in magnetic flux (which remains zero) 
through the loop in which current is induced, as recognized 
by Cohn [3], Culliwick [41, and Feynman [5] (Although 

such as Savage [ 6] , Panofsky and Phillips [7], and 
Scanlon et al (8] try to see a change in flux.). The Maxwell 
flux rule, involving the net flux through a closed loop, 
either assumes that the induced emf occurs uniformly around 
the loop; or else it fails to predict wheroe the seat of the 
emf might be in the closed loop. t411ler reveals the fact 
that the seat of the emf can be localized experimentally and 
that its position in the closed loop can be determined. 

Faraday [9] performed his famws rotating disk 
experiment in 1832. A copper disk is rotated near the pole 
of a magnet. Stationary wires touch the center and the ri.Jn 
of the disk through sliding contacts, as shown in Fig . 1. 
This produces an emf, which can be detected by inserting a 
volt meter in the circuit. 

Faraday attributed this "motional emf" to the disk 
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Fig. 1. Faraday's rotating disk experiment. The magnetic 
field B is perpendicular to the disk. 1 he induced emf is 
registered on the volt meter. 

"cutting" magnetic field lines, the induced electric field 
at a point on the disk being given by 

E • v xB/c , (2) 

were v is the velocity of the disk and B is the magnetic 
field at the point in question. Faraday originally assumed 
that the magnetic field lines were rigidly fixed to the 
magnet; and, thus , relative motion between the disk and the 
source of the magnetic field was needed to generate an emf. 
This view is still found in most textbooks anr! held by many 
phys i cis t s , such as Trocheris [10] and Culhlick [4] . But it 
is not true . When the magnet is rotated with the disk, 
prec i sely the same emf is induced; as soon discovered by 
Faraday himself. Faraday then changed his mind: He decided 
that the magnetic field lines remain fixed i n space; even 
though the magnet itself rotated. In this way the "cutting" 
hypothesis could still work. In 1851 Faraday [11 J again 
changed his mind: He decided that the magnetic field lines 
did, in fact, rotate with the magnet after all. The ''moving" 
magnetic field lines, "cutting" the stationary external 
circuit rs in Fig. 1 , generated the observed emf. CUll wick 
[4] agrees with this view of Faraday . He says that the emf 
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occurs in that wire which is in motion relative to the 
magnet. This conclusion is not supported by MUller's 
experiment nor Weber's theory. 

2.1. Weber theory of unipolar induction 
The Weber force on a moving charge q at r due to a 

rooving charge q' at r' is 

c2 Fw = (qq'R/R3 ) (c 2 + V2 - 3(V·R)Z /2R2 + R·dV/dt), (3) 

where R = r - r' and V = "1/ - v' are the relative position 
and relative velocity. Induction involves the force on the 
roobile electrons - qe in a detector conductor. For tmipolar 
induction the electrons in the detector have only the 
velocity of the detector itself vi (Conduction currents in 
the detector are not considered.). For unipolar induction 
only steady current sources are involved where = o. 
The net force on the detector electrons is then the sum of 
the force due to the source ions q [ moving with a velocity 
v{, which is simply the velocity of the source conductor, 
plus the force due to the source electrons - moving with 
a velocity + v{, where is the steady electron velocity 
relative to the source conductor. For the case of the source 
carrying no net charge, q{ = q;, Eq.(3) yields the Weber 
force on the detector electrons as 

c 2Fw = ( -2vi ·v; + + 

+ - -

(4) 

The last four terms on the right of Eq.(4) involve the 
force due to velocity squared currents on a static charge. 
Such effects are very small and can be ordinarily ignored 
(These tenns are considered in part III.) The observable 
unipolar induction between point charges then becomes 

c 2Fw = + 3(R•v1)(R•v;)/R2). {5) 

An interesting feature of this result (S) is that the 
JOOtion of the source conductor vi does not enter in! Chly 
the velocity of the source electrons relative to the source 
conductor v is involved. It may be noted that roving a 
current carrying wire parallel to itself with the velocity 
v{ does not change the net current in the wire, the electron 
current - qHv + v D plus the ion current q fv f yielding 
- when q! = qf. 
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When extended sources are rooved with a velocity v{ an 
additional effect, a "pseudo-effect", occurs, which yields 
the appearance of a time rate of change of current or the 
acceleration of charges due to a variation in the electro-
magnetic field at the detector with time. This force per 
unit charge is given by 

- (vi ·V)(A - Vf). (6) 

It vanishes for point charges. For extended sources this 
result (6) must be added to Eq. (S) for the unipolar induced 
force per unit charge given in terms of electromagnetic 
fields; thus, using Eqs.(I.11) and (!.12) (where I refers to 
equations in part I of this three part paper) 

cE(induction) = v 1 x (V xA) - vi V·A (7) 
+ (vi· V)V f - (v{ • V)(A - V f). 

1his Weber-Wesley result (7) can predict the induced 
electric field in a detector for many possible situations; 
rut the experiments of interest here require only closed 
loop current sources where V ·A = r = 0. In addition, in 
these experiments the motion of the source v' is confined 
to the situations where - (v • · V)A = 0. For the experimental 
situations of interest here the unipolar induction reduces 
to 

E = vx (VxA)/c. (8) 

Using the fact that B = V x A, Eq. (8) yields the 
original Faraday result (2). It might, thus, seem that the 
Weber theory offers nothing more than the Faraday theory; 
but this is not true. The derivation of Eq.(2) from the 
Weber theory presented here now makes the meaning of the 
magnetic field clear. The interpretation of the magnetic 
field by Faraday and Maxwell as physically tangible rigid 
lines of force attached to a source is seen to be physically 
untenable. The B field, like the A field from which it is 
defined, is merely a mathematical artifact, a mathematical 
device, of no particular direct physical significance, used 
to help solve the problem of how moving point charges 
affect moving detector charges. 

To make it abundantly clear that magnetic field lines 
can never "move" to "cut" a stationary wire, it may be noted 
fran Eqs. (S) and (8) that the induced electric field is 
entirety independent of the state of rotational motion of 
source solenoid (or permanent magnet) about the axis of the 
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solenoid. Rotating the solenoid merely moves 
the solenoid parallel to themselves; so, 
following Eq. (5) above, the net current in 
remains the same . 

the wires of 
as explained 
the solenoid 

The question remains: What is the frame of reference 
in which the velocity Vi is to be measured? It is not to be 
measured with respect to the current electrons in the source 
solenoid. nor with respect to the moving solenoid itself. 
Experimentally the velocity Vi is measured with respect to 
the laboratory. When the disk is stationary in the labor-
atory no induced electric field is observed. It may be seen 
that Eq. (5), which yields the induction formula ( 8), arises 
fran the cross product tenns of the squares of Petative 
velocities· (v· - v' - v') 2 IR·(v· - v' - v')l 2 (v· - v•)z • 1 e 1• 1 e 1 • 1 e 
and IR · (vi - vi) 12 • The squared tenns drop out leaving only 
the cross product tenns and 2(R Thus, the 
Weber theory starts out usmg only Pelative velocities to 
derive a result which has only an absotute velocity (The 
reference frame is experimentally the laboratory.). The same 
thing happens in deriving Ampere's law from the Weber theory 
(Eq. (I. 5) from (I. 3) and ( I. 4)) . The eros s product tenns 
yield a result in which the source and detector electron 
velocities become independently prescribed (experimentally 
with respect to the laboratory). 

1. 2. Unipolar induction experiments of Kennard 
and MUller 

Kennard [2} eliminated the circuit pqrs, as shown in 
Fig. 1. No current flow was involved. He measured directly 
the static voltage difference induced across pq. There was 
no doubt that the seat of the emf was across pq. Since the 
static voltage difference is extremely small; the effect was 
enhanced by introducing a capacitor across pq. The capacitor 
consisted of two concentric cylinders. They were connected 
by a radial wire which functioned as the radius pq of the 
Faraday disk, Fig. 1. The magnetic jield was not produced by 
a pennanent magnet but by a concentric solenoid outside the 
capacitor. The solenoid was free to rotate independently. 
With this setup Kennard observed the following: 1) A voltage 
difference was induced when the radial wire together with 
the capacitor were rotated and the current carrying solenoid 
was stationary. 2) No voltage was induced when the solenoid 
was rotated and the radial wire with the capacitor were 
stationary. And 3) the same voltage difference as in case 1) 
above was generated when the radial wire with the capacitor 
and the solenoid were all rotated together at the same rate 
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as in case l). Kennard, thus, demonstrated that unipolar 
induction occurred when there was no relative JOOtion what-
so-ever between any portions of the apparatus. The induced 
voltage depended in this case only upon the absoZute 
rotational velocity with respect to the laboratory of the 
whole apparatus as a unit. More precisely, in agreement with 
the Weber theory above, the induced voltage was only a 
funCtion of the rotational velocity with respect to the 
laboratory of the radial wire with the capacitor and was 
independent of the rate of rotation of the solenoid. 
Kennard's result clearly shows that magnetic field lines do 
not rotate with the solenoid as assumed by Faraday in 1851h 

M.iller Ill obtained the same result as Kennard using 
a permanent magnet and the setup shown in Fig. 2. In 
addition, MUller was able to localize the seat of the emf. 
Like Kennard, MUller replaced Faraday's disk with a straight 
wire pq. Instead of having the equipment perform con;>lete 
rotations, Milller simply oscillated the various portions of 
his setup back and forth. The portion pq, the portion rs, 
and the magnet could be oscillated independently. 

Considering Fig. 2, if portion pq is oscillated 
rotationally back and forth rapidly in comparison to the RC 
decay time of the circuit, while the portion rs is held 
stationary, an emf 1 will be induced across pq and none will 
be induced across rs. This will cause an oscillating voltage 
v1 to appear across R1 and essentially no voltage signal 
across R2• When rs is rotated while pq remains stationary 
a signal V2 will appear across R2 and essentially no signal 
across R1, indicating an emf is induced in rs and none in 
pq. In this way he was able to distinguish in which branch 
of the circuit qpt or qrst an emf arose. The seat of the emf 
in the closed loop pqrstp could, thus, be localized. 

To eliminate the possibility that when the magnet is 
oscillated "moving" magnetic field lines might also induce 
an emf in the capacitor branch of the circuit giving 
spurious results the experiment was also performed using an 
iron yoke around the magnet extending outward and inward to 
the plane of Fig. 2. With the yoke most of the magnetic 
field remains in the yoke; and the wire qrs and capacitor 
branch of the circuit were sheilded from the magnetic field. 
With the yoke no magnetic field existed in the capacitor 
branch; and no emf could possibly be induced in this branch. 

The experimental results are summarized in Table 1. 
The symbol - signifies no angular oscillation and the symbol 
(,) signifies an angular oscillation, where, if two or more 
portions were oscillated at the same time, they were 
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Fig. 2. Diagram of the MUller experiment to determine the 
seat of unipolar induction using an annular shaped permanent 
magnet (shaded) with a gap as shown. Portions pq and rs of 
the circuit and the magnet can be oscillated back and forth 
independently by virtue of the mercury cup contact. M 
oscillating voltage V1 across R1 indicates an emf 1 induced 
in the port1on pq; and an oscillating voltage v2 across R2 
indicates an emf 2 induced in the portion rs. 
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Table 1. Seat of unipolar induced emf for different cases 

case oscillating no yoke with yoke 
magnet wire pq wire rs emf pq emf rs emf pq emf rs 

1 - - - 0 0 0 0 z - - w 0 + 0 0 
3 - w - + 0 + 0 
4 w - - 0 0 0 0 
5 - w w cancelled + 0 
6 w - w 0 + 0 0 
7 w w - + 0 + 0 
8 w w w cancelled + 0 

coupled together to oscillate as a unit. The 
synbol + means an emf was observed and the symbol 0 means 
that no emf was observed. For the cases 5 and 8 no signal 
was observed; as the emf's in pq and rs, being the same, 
acted like two batteries back to back, which prohibited any 
turrent from flowing and any voltage from being registered. 

1.3. Discussion concerning unipolar induction 
The experimental results of Kennard and those of 

Miller, as sl.Dillllari zed in Table 1, agree in all particulars 
with the Weber theory. Their results do not agree in all 
particulars with the theories of Maxwell and Faraday. 

The Maxwell flux rule does not work; as the amount of 
flux through the loop pqrstp remains zero for all cases; and 
the emf is localized and not unifonnly distributed around 
the whole loop. 

The fact that unipolar induction depends solely upon 
the absol.ute (or more precisely the Zabomtory) rotational 
velocity of the detector and does not depend at all upon the 
rotational velocity of the source of the magnetic field 
contradicts the usual traditional Faraday theory that 
induction arises only by virtue of the 1'e1.ative rotational 
motion of the source and the detector. 

2. DETERMINATION OF SELF TORQUE ON PAPPAS-VAUGHAN 
Z-ANTENNA 

The Maxwell field theory displaced the Weber action at 
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a distance theory toward the end of the last century; 
because the Maxwell theory predi ted Herz electromagnetic 
waves, and the Weber theory could not. The failures of the 
Maxwell theory for slowly varying effects, in contrast to 
the success of the Weber theory, (as discussed above) was 
simply "forgotten". But the situation has now changed 
dramatically. The Weber theory is no longer merely an action 
at a distance theory; it is now also a field theoPy; and it 
now also predicts e"Lectroomagnetic wves. The question then 
arises: Does the superiority of the Weber theory for slowly 
varying effects also hold true for rapidly varying effects 
involving time-retarded fields? Certainly the Weber field 
theory is more canplicated with its two additional field 
potentials r and G, Eqs. (I .1 Z); so one might expect it to 
provide some advantages. The present problem of predicting 
the self-torque on the Pappas-Vaughan Z-antenna provides an 
excellent test case. The Weber field theory predicts the 
correct observed zero self torque; whereas the Maxwell field 
theory predicts a sizeable nonvanishing self torque, which 
is not observed. The superiority in general of the Weber 
theory for rapidly varying time retarded fields compared 
with the Maxwell theory is thereby proven. It can, of 
course, be expected that the Weber theory will give 
precisely the same answers as the Maxwell theory for 
appropriate limited situations. 

For slowly varying effects the biggest failure of the 
Maxwell theory is its violation of Newton's third law, being 
based upon the Biot-Savart law or the Lorentz force law. 
Does the same failure occur for rapidly varying field 
effects? The present Z-antenna example provides the answer: 
The Maxwell theory continues to violate Newton's third law 
for rapidly varying time retarded field effects. This 
violation of Newton's third law by the Maxwell theory is 
independent of the fact that Newton's third law for time 
retarded fields is not in general obeyed instantaneousLy 
Wlless mmentt.DR is assigned to '!;.he field itself. Time 
retarded fields (such as needed to represent light waves) 
take on physical properties of their own, transmitting 
energy and manentum, independent of the original source or 
final sink. However, for the present Z-antenna example these 
inertial properties of the field are automatically taken 
into account; and the Maxwell theory still violates Newton's 
third law for the time average self torque. 

The Weber and Maxwell theories considered here involve 
the potential fields (Eqs.(I.14) and (I . 15)) defined by 
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41 = J d'r'p'(r',t*) / R, A= J d'r'J'(r' ,t*)/cR, 

f = J d3 r'R•J' (r', t*)/cR, G = J d3 r Rp'(r',t*)/R, 
(9) 

where t* is the retarded time, 

t* = t - R/c. ( 10} 

The Weber force (Eq.(I.11)) is given by 

dlfw/d3 r "' - pV41 + J x (V xA) /c- poA/atc- J V •A/c (11 ) 

+ (aJ/at)41/c 2 + (J·V) Vr/c + pVar/atc- (CaJ/at)·V) G/c2• 

The Maxwell-Lorentz force (Eq.(I.19)) is given by 

d3 F1.fd3 r "' - pV41 - pcM/atc + J x (V xA)/c. (12) 

These Eqs. (9) through (12) are used below to detennine the 
theoretically expected self torque on the Pappas-Vaughan z-
antenna, as predicted by the Weber theory, Eqs . (9), (10), 
and (11) and as predicted by the Maxwell theory, the first 
two of Eqs.(9), (10) and (12). 

2.1. Pappas-Vaughan experiment with z-antenna 
Pappas and Vaughan [ 12] suspended a Z-shaped antenna, 

as shown in Fig. 3 by a 5 m long nylon fiber. No other 
roochanical connection to the antenna is involved . The 
antenna is driven inductively by an air core transformer at 
the center at a frequency ( 150 Mhz) such that the 
standing electromagnetic waves along the antenna have a 
wavelength A ( 2 m) matching the dimensions of the antenna 
as shown in Fig. 3 . When driven the antenna shows zero self 
torque. The tors ion balance fonned by the suspended antenna 
is sufficiently sensitive to detect torques of only 10 - 1 
Nt m. 

The geanetry and choice of coordinates are indicated 
in Fig. 3. The antenna is suspended along the z axis. 
Portion 1 is taken at x = A/2 fran y :: 0 to y :: A /4, the 
central portion 2 is taken along the x axis fran x • A /2 to 
x = - A/2, and the portion 3 is taken at x = - A /2 from y 
= 0 to y = - 'A./4 . 

The air core transformer at the center induces current 
and charge densities that are time hannonic with all portions 
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Fi g. 3 . Diagram of the Pappas-Vaughan Z-shaped antenna 
suspended by a fiber along the z axis, showing the choice 
of coordinates and the three portions upon which a standing 
eleLtranagnetk wave is established. Portions 1 and 3 are a 
quarter wavelength long, and portion 2 is a wavelength long. 

of the antenna in phase; thus, 

J{r, t) = J{r) coswt, p{r, t) = p(r) sinwt, {13) 

where w = Znf is the angular frequency. To satisfy the 
equation of continuity for charge, V · J + op/ot = 0, the 
time hanoonic variation for the charge js taken as sinwt, 
when the time variation of the current is taken as coswt. 
The space part of the current density J(r) induced in the 
various portions of the anterma are 

J 1 = ey Icos kyo(x- A./2)u(y)u(-y + >../ 4), 

J 2 = -exlcos kxu(x + A./2) u(-x + A./2)6(y), (14) 

J 3 "' e Y I cos kyo(x + 'A/2) u( -y) u(y + A./4), 
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where o(x) is the delta function, u(x) is the unit step 
function, zero for x < 0 and unity for x 0, and I is the 
peak current. The space part of the charge density p (r) 
induced on the various portions of the antenna are 

cp
1 
=I sinkyo(x- A./2) u(y) u(-y + A./4), 

cp
2 
•- Isinkxu(x + A./2) u(-x + A./2)o(y}, 

cp
3 
=I sinkyo(x + 'A/2} u(-y) u(y + A./2) . 

(15) 

2. 2. Self torque on Z-antenna due to forces 
obeying Newton's third law are zero 

A force F(r,r') acting on an unprimed particle (or 
volume element d 3 r) at r due to a primed particle (or volume 
element d3 r') at r' that satisfies Newton's third law is of 
the form (16) 
F(r,r') = (r- r')fl{r,r') = -F(r',r} =- (r'- r)H(r',r), 

where H(r,r') • H(r' ,r) is a function synmetric to an inter-
change of primed and unprimed coordi nates, and F(r' ,r) is 
the force acting on the primed particle (or volume element 
d3 r') at r' due to the unprimed particle (or volume element 
d3 r) at r. The torque T(r,r') about an axis, which may be 
taken as the z axis, produced by the force F(r,r') acting 
on the unprimed particle (or volume element d 3 r) is given, 
using Eq.(16) by (17) 

T(r,r') = (sxF(r,r'))·ez = (x(y- y')- y(x- x'))H(r,r'), 

where 

(18) 

is the radial distanLe from the z axis, the lever arm, and 
e 1 , e.., and ez are unit vectors in the cartesian coordinate 
directions. The net self torque on the system, the torque 
due to the force acting on the unprimed particle plus the 
torque due to the force acting on the primed particle, then 
becomes, using Eqs.(16), (17), and (18), 

T(r,r') + T(r',r) = (sxF(r,r') + s' xF(r',r))·ez 
{ 19) 

= (yx' - xy')H(r,r') + (y'x- x'y)H(r',r) • 0 
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A sunrnation over all particle pairs or an integration over 
both primed and unprimed volume elements then also yields 
zero. 

This result was, of course, to be expected; since, 
according to Newton's third law for rotation, the sum of the 
internal torques acting on any isolated system must be zero. 

2.3. Weber theory predicts a zero self torque on 
the Pappas-Vaughan Z-antenna 

Substituting Eqs.(l3) into Eqs.(9) through (11), the 
Weber force on an element of volume d3 r at r due to a volume 
element d3 r' at r' may be obtained at any instant. Experi-
mentally only the time average force is of interest here. 
The average over a cycle involves the integrals 

(20) 
f 2w/w 

0 
dt s1n wt s1n(wt 

f 2TI/IJJ 

0 
dt cos wt cos(wt 

- kR) .... (coskR)/2, 

- kR) = (cos kR)/2, 

where k .,. w/c = 2 n/J... is the propagation constant. 
Using this result (20) the time average force between 

volume elements fran Eqs. (9) through ( ll), which is 
appropriate for the Pappas-Vaughan Z-antenna, is given by 

2c 1 (d6F11/d3 r 3 dr' 3 ) = R{(c1 pp'- 2J.J' + 3(R·J)(R·J')/R1 

. (21) 
+ wpR·J' - wp'R·J) Q(R) - k 2 ((R·J)(R·J' )/R2) P(R)}, 

where p, p', J, and J' refer here to only the space parts 
as given by Eqs.(l4) and (15), and where 

P(R) = (cos kR)/R3 , Q(R) = {coskR + kRsinkR)/R3 • (22) 

This time average result lZl) is seen to satisfy 
Newton's third law; as it is directed along R and inter-
changing primes and Wlprimes yields only a change of sign, 
the functions P(R) and Q(R) being invariant to an inter-
change of primes and unprimes. Thus, considering the result 
of the previous Section 2.2 above, the Weber theory predicts 
a zero self torque on the Pappas-Vaughan Z-antenna. 
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2.4 . Integrals for the Maxwell-Lorentz self 
torque on the Pappas-Vaughan Z-antenna 

Substituting the time hannonic variations specified by 
Eqs.(13) into the first two of Eqs.(9) and (12) and taking 
a time average over a cycle, using F.qs . (ZO) the time average 
Maxwell-Lorentz force between volume elements becomes 

2c2 (d6FH/d3 rd3 r') = c.1pJ'P(R) + (cz pp'R (23) 
- R(J·J') + J' (J·RJ) Q(R), 

where P(R) and Q(R) are defined by Eqs.(22) and p, p' J, and 
J' refer to the space parts as given by Eqs.(14) and (15). 
It may be seen that the second and third terms on the nght 
of Eq. (23) satisfy Newton's third law . Considering Section 
2. 2 above, these terms will, thus, contribute nothing to the 
self torque on the Pappas-Vaughan Z-antenna. Only the first 
and fourth terms on the right of Eq. (23), violating Newton's 
third law, can contribute to a nonzero self torque. 

It is convenient to write the self torque T as the sum 
of two terms: U the contribution from charge-current inter-
actions given by the first term on the right of Eq. (23) and 
V the contribution from current-current interactions given 
by the fourth tenn on the right of Eq. (23); thus, 

where 
T = U + V, 

U = (w/2c 2 J[/d3 rd3r' pe1 ·(sxJ') P(R), 

V = (1/2c 2 JJ/d3 rd 3 r'ez·(S xJ') Q(R), 

(24) 

(25) 

where the p's and J's are given by Eqs.(14) and (15), s is 
defined by Eq.(18), and P(R) and Q(R) are given by Eqs.(22) . 

The labor of evaluating the integrals in Eqs.(ZS) is 
considerably reduced by noting that the charge and current 
densities are all confined to the xy-plane; so J' has only 
x and y r.:o"llonents; and the volume integrations reduce to 
integrations over x, y, x', andy'; thus, 
U = ( w/2c 2 ) Jfdxdydx' dy' p (xJ; -

V = (1/Zc2Jffdxdydx' dy' (xJ;- yJ;J(cx- x')JK 
(26) 

+ ( y - y I )J y) Q (R) • 
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llte integrals ( 26) may be broken down in terms of 
contributions form the various portions of the antenna. Thus 
U13 is the torque arising froot charge-current interaction 
due to portion 3 acting on portion t, Uz 1 is the torque due 
to portion 1 acting on portion 2, etc. From synmetry it may 
be seen that the torque involving portion 3 equals the 
torque involving portion I. In particular, to evaluate the 
torque on portion 3 a mathematical rotation of the antenna 
through 180° may be made to bring portion 3 into the 
original position of portion 1. Only the signs of the 
charges and currents are reversed as compared with the 
original situation before the rotation. Rut since the 
integrals involve a product of two currents or a product of 
a <.harge density and a current density; the integrals remain 
precisely the same as before the rotation. The torque 
involving portion 3 must, therefore, be identical to that 
produced by portion 1. It is sufficient to merely double the 
contributions involving portion 1 to obtain the net torque. 
11te t:ontributions due to charge-current and current-current 
interactions may then be written as 

(27) 

Substituting Eqs.(14), (15), and (22) into the first 
of Eqs.(26) yields 

J: >./4 fo 
(n P /cz) dy dy' sin ky cos ky' (cos kR' /R') 

0 ->../ 4 

JJ../2 £"'4 (28) 
(kJ2/c1 ) dx dy y sin)<ycos kx (cos ktl./R), 

->./2 0 

f >./2 1"'4 2U21 = (- kP/c 2 ) dx dy x kxcos ky (cos kR/R), 
->. /2 0 

where here 

R': = + (y _ y'): and R2 = (x- 'A./2)1 + y 2 • (29) 



Wtbtr Eltelrodynamla, Pari II 417 

substituting F.qs.(14), (15}, and (22) into the 
scLond of Eqs.(26) yields 

2V13 = (P 'AI2c 2 )J.l./
4
dyJ

0 
dy' (y - y') cos ky cos ky' Q(R'), 

0 - A/ r, 

J.l./ 2 l.l./4 
2V1z = (P/c2 ) d.'< dy y 2 cos kxcos kyQ(R), 

.l./2 0 
(30) 

l .l./Z J,.l./4 
2V 2 1 = ( - P I c 2 ) d.'( dy x( x - 'A I 2) cos kx cos ky Q ( R } , 

.l./ 2 0 

where R and R' are given by Eqs. (29) and Q(R) is defined by 
the second of Eqs.(22). 

2.5. Evaluation of the Maxwell-Lorentz integrals 
for the self torque on Pappas-Vaughan Z-antenna 

'flte net Maxwell-Lorentz; self torque on the Pappas-
Vaughan Z-antenna given by Eq. (24) involves the integration 
of the integrals found in F.qs.(29) and (30). It may be noted 
fran the definition of Q(R), Eq. (22) , and Eqs. (29) that 

(y- y')Q(R') '"' - i3l;)y(coskR' I R'), 

y Q(R) = - a lay (cos kR/R}, (31) 

(x - 'AI2)QlR) • - olax (cos kRI R) . 

Using this result (31), the integrals in Eqs.(30) may be 
integrated by parts yielding 

ZV1 3 = (P 'A/2c2
) J:/

4 
dy' cos ky' {-cos ky (cos kR ' / R' )I 

Y• 0 

1). /4 } 
- k 

0 
dysinky(coskR' I R') 

(continued on next page) 



J.\/2 { 
= (P/c 1 ) dxcoslc< -ycosky(cos kR/R) 

-'A /2 y•O (32) 

+ J: 14
dy (cos ky - ky sin ky)(cos kR/R)} 

i l./4 { 'A/2 
= ( fl /t.: 1 ) dr cos ky x <.:oS kx (cos kR/R) 

0 •• - 'A/2 

-J >. /Z dx (cos kx - kx sin lex)( cos kR/R}l. 
-l. / 2 J 

It may be seen that the last term on the right of the 
first of Eqs.(32) equals- 2U13 , as given by the first of 
Eq.(28); the last tenn on the right of the second of Eqs. 
(32) equals - 2U 12 , as given by the second of Eqs.(28); and 
the last term on the right of the third of Eqs. (32) equals 
- 2U 21 , as given by the third of Eqs.(28) . Moreover, it may 
be seen that the second tenn on the right of the third of 

(32) equals minus the second term on the right of the 
third of Eqs. {32). Cunbining terms for the total self torque 
using Eqs.(24), (27), (28), ru1d (32), therefore, yields only 
the sum of the first tenns appearing on the right of the 
three Eqs . (32), which involve only single integrations. 
Putting in the limits of integration arising from the first 
integrations and adding the resulting single integration 
terms in Eq. (30) yields the net time average Maxwell-Lorentz 
self torque on the Pappas-Vaughan Z-antenna as 

l l./4 
T = (- P A./2c1 ) 

0 
dy (cos 1 ky)/y. (33) 

This result ( 33), whkh arises primarily from the 
comers of the antenna, predicts an infinite Maxwell-Lorentz 
self torque on the antenna, there being a logarithmic 
singularity as y --+ 0. The infinity arises from the fact 
that the current densities were asstDiled to be infinite, a 
finite current being confined to wires of infinitesimal 
cross sections. If wires are asstuned to be of finite cross 
section and to be bent around small curves instead of sharp 
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comers, the integral in Eq. {33) can be replaced by a rough 
realistic estimate by letting y = b, where b is a small 
nonzero parameter. In particular, for the Pappas-Vaughan 
setup b may be taken as roughly equal to .\/100 (which is 
about 1 on for the antenna actually used). Thus, 

J. 'A/4 
dycos 2 ky/y J: 'A/4 

dy cos 2 ky/y 
'A/I 0 0 (3/f) 

::;: 1"' 4 
dy(l/2)/y D 1.610; J 'A/100 

2.6. Discussion concerning the self torque on 
the Pappas-Vaughan Z-antenna 

Pappas and Vaughan found from the power fed to their 
antenna of at least 35 watts and its impedance of 70 ohms 
that the peak current I was at least 1 ampere . Substituting 
this value of I and the wavelength ,\ = 2 m into Eq.(33), 
using Eq.(34), yields the estimated self torque on the 
Pappas-Vaughan Z-antenna as predicted by the Maxwell-
Lorentz theory of at least 

T "' - 0. 805 PA/c2 , .. - w-2 Nt m. (35) 

This is 5 orders of magnitude greater than the minimum 
torque of 10 - 7 Nt m that could have been observed. They 
observed no torque. 

As an experimental t.het.k thE'y had no diffiwlty in 
obtaining a strong deflection when a half-wavelength 
straight wire was brought into the neighborhood of one end 
of their antenna . Tile dipole induced in the wire by their 
antenna would be expected to produce an effect of the same 
order of magnitude, but smaller, than that predicted by the 
Maxwell-Lorentz theory. 

It is t.oncluded that nonzero self torque predicted 
by the Maxwell-Lorentz theory does not agree at all with the 
experimental result of Pappas and Vaughan; while the zero 
torque predk ted by the Weber field theory and Newton's 
third law does agree with their result to within the limits 
of the sensitivity of their setup. 
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