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The original Weber action at a distance theory, valid for 
slowly varying effects, is extended to time-retarded fields, 
valid for rapidly varying effects including radiation. A new 
law for the force on a charge moving in this field is 
derived (replacing the Lorentz force which violates Newton's 
third law). The limitations of the Maxwell theory are 
discussed . The Weber theory, in addition to predicting all 
of the usual electrodynamic results, predicts the following 
crucial results for slowly varying effects (where Maxwell 
theory fails): 1) the force on .Anpere' s bridge in agreement 
with the measurements of Moyssides and Pappas, 2) the 
tension required to rupture current carrying wires as 
observed by Graneau, 3) the force to drive the Graneau-
Hering submarine, 4) the force to drive the men.ury in 
Hering's pLDnp, and 5) the force to drive the oscillations 
in a current carrying mercury wedge as observed by Phipps. 

Key words: electrodynamics, Weber theory extended, Maxwell 
limitations, current steady effects. 

1. INTRODUCTION 

The continued dissatisfaction with special relativity, 
the failures of Maxwell theory, and possible significance in 
nechanics and gravitation has led to considerable renewed 
interest in Weber electrodynamics. The present paper reviews 
some of this recent experimental and theoretical research. 
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Due to the aiOOunt of material involved and its complexity 
it is published in three parts entitled: "Weber electro-
dynamics, part I: general theory, steady current effects 
part II: unipolar induction, Z-antenna, and part 
mechanics, gravitation." 

2. ORIGINAL WEBER ELECTRODYNAMICS 

Weber [1] wrote his original action at a distance 
theory in 1848 to fit the then known facts: Coulomb's law 
Ampere's original empirical law for the force 
current elements, and Faraday's law of electromagnetic 
induction. Weber introduced the idea that electric current 
was composed of flowing charges, where each charge was 
quantized to fit Faraday's law of electrochemical deposition 
(e = Q/N 0 where Q is the net charge to deposit a gram atomic 
equivalent and N 0 is Avogadro's number). Weber postulated 
a velocity dependent potential between two moving charges, q 
at rand q' at r', as 

U = (qq'/R)(1 - (dR/dt) 2 /2c2), (1) 

where R = I r - r' I and the constant c was assumed to be the 
velocity of light. The first term on the right of Eq.(l) is 
simply the Coulomb potential. 

Taking the time derivative of Eq.(l) gives 

dU/dt = - V·F"" (2} 

where V = v - v• is the relative velocity between the 
charges and Fw is the Weber force on charge q at r due to q' 
at r', 

where gaussian units will be · assumed throughout. This 
force (3) clearly obeys Newton's third law, being directed 
along R and changing sign when primed and unprimed coor-
dinates are exchanged. Since the force is derived from a 
potential; energy is conserved. The Weber theory is the only 
electromagnetic theory ever proposed that can conserve 
energy for an isolated system of moving charges. This result 
(3) is found to be in agreement with an amazingly large 
number of different experimental situations [2 ,3]. It works 
for slowly changing effects where time retardation is not 
required and action at a distance remains valid. Time 
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intervals of interest, t.t, are assumed to be such that 
!It > > L/c, where L is the size of the laboratory. 

The force on an element of a conductor at r containing 
q· stationary positive ions and - qe mobile negative 
eiectrons due to an element of a conductor at r' containing 
q! stationary ions and - q' mobile negative electrons is 
o6tained by adding the fouf forces involved as given by 
Eq. (3); thus, 

czFw .. (R/Rl) { cz(qi - qe)(q{ - - (qi -

- 3(v'·R) 2 /2R2 - R·dv'/dt) - (qf- - 3(v·R2 /2R2 

+ R·dv/dt) + (- 2v·v' + 3(v·R)(v' ·R/R2)}, (
4) 

where v and v' are the velocities of the electrons. The 
first tenn on the right of Eq. ( 4) is simply Coulomb's law 
for the force between two charged conductors. 

Ampere's original empi rica! force law [ 4] is given by 
Eq. ( 4) when no net charges are on the conductors, or when 
q. =q andq! =q'· thus 

1 e 1 e' ' 

c 2 Fw • 2v·v' + 3(v·R)(v'.R)/R2 ). (5) 

Identifying linear current elements with the moving charges 
by letting Ids= - qev and I'ds' = - Eq.(S) may be 
written in the more familiar form as 

Ampere's law (5) or (6) is seen to obey Newton's third law, 
like the general Weber theory, Eqs.(3) and (4) from which 
it is derived. 

Faraday's law of electromagnetic induction concerns 
the force on the mobile electrons only, in contrast to a 
ponderanotive force that involves all the charges in a 
conductor. In particular, the force on the electrons in the 
l.Dlprimed conductor due to the accelerated electrons in the 
primed conductor, as given by Eq.(4), is 

(7) 

The emf (electromotive force) around a ctosed loop is 
obtained by integrating the electric field E = - Fw /qe around 
the loop. Replacing the moving charges with a linear 
current element, where =- R(dl'/dt)R•ds' = 
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- R1 (di'/dt)ds', the emf induced in an unprimed loop due to 
the accelerated charges in a primed loop becomes from Eq.(7) 

emf= -rj;. ds·fi(di'/dt)ds'/c2 R =- d/dtif)ds·A/c 

= - d/dtif). (V xA) ·n da/c = - d/dt/B·n da/c, 
(8) 

where the usual definition of the magnetic potential A for a 
closed current loop has been introduced, Stokes theorem has 
been used, and the usual definition of the magnetic field B 
as B = V xA has been introduced. The right side of Eq. (8) is 
seen to be the time rate of change of the magnetic flux 
through the unprimed loop; and Eq. (8) is seen to be the 
usual Faraday law of electromagnetic.induction, 

emf = - dcl>/dtc. (9) 

(This result (9) is a special case of induction. More 
general cases are considered in part II.) 

It should be noted from Eq. (4) that there is also a 
ponderomotive force to be associated with Faraday induction; 
since accelerating charges - qe will produce a nonzero 
force on a conductor with the charge (qi - qe). In addition, 
there is an inverse effect given by the force on electrons 
- qe with an acceleration dv/dt due to a static charge 
(ql - qD. 

The forces between static charges and charges moving 
with the velocity squared, terms involving v' 2 , (v'·R) 2 /R1 

v2 , and (v·R) 2 /R2 in Eq. (4), represent very small forces [3j 
which may ordinarily be neglected (These terms are taken 
into consideration in part III.). 

Neglecting the velocity squared forces and replacing 
the moving point charges with charge and current volume 
densities, the 1\'eber force per unit volwne d3 r at r 
containing the charge and current densities p and J due to 
charge and current densities p' and J' in a volwne element 
d3 r' at r' becomes from Eq.(4) 

c 2 d5F 11 / d3 rd3 r' e (R/R')(c1 pp' - 2J ·J' 

+ 3(R·J)(R·J' )/R1 - pR· c3J' /at + p'R· i:!J/at). 
(10) 

The effect of moving conductors may also be deduced 
from Eq. (3) (3]. Pseudo-effects, where charge and current 
densities change but there is no corresponding charge motion, 
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maY also be taken into account [3) . 
Because of occassional misunderstanding, it is 

important to note that point charges q and linear current 
elements Ids are mathematical singularities, that, implying 
infinite forces, cannot exist in nature. Only fornD.Jlas, 
such as ( 1 0), that involve the charge density p and current 
density J are empirically correct; as they involve no 
mathematical singularities implying infinite forces. 

3. WEBER ELECTRODYNAMICS EXTENDED TO FIELDS AND 
RADIATION 

An action at a distance theory can be represented 
directly in terms of the force between two particles, such 
as Eq.(3); or it can be represented in terms of intermediate 
fields. In the field representation a particle, or distribu-
tion of particles, is viewed as first giving rise to an 
intermediate field. It is then the field that acts on 
another particle thereby giving rise to the observed force. 
Although these two representations may evoke different 
images of physical mechanisms involved; they are, in fact, 
mathematically isomorphic (when no time retardation is 
involved) . For example, the introduction of the classical 
gravitational potential field to help solve problems says 
nothing more than Newton's inverse square law of gravitation. 

Weber electrodynamics, as given by Eq. ( 10), has been 
written by Wesley {2 ,3] as a field theory. This can be done 
by integrating Eq. ( 10) over a fixed volume in r' -space 
containing the sources p' (r', t) and J' (r', t). The unprimed 
quantities p(r,t) andJ(r,t) upon which the primed sources 
act are taken out from under the integral sign. The desired 
result is 

(11) 
d 3Fw/d3 r =- pV<%1 + Jx(VxA)/c- p8A/atc - JV·A/c 

+ {aJ/ot) <tl/c 2 + (J·V) V f/c + pVof/'·tc- (CoJ/ot)·VJG/c2, 

where 

= J d3 r'p'(r',t)/R, 

f = J d3 r'R·J' (r', t)/cR, 

A"' J d 3 r'J'(r',t)/cR, 
(12) 

G "' J d3 r R.p' (r', t)/R, 

where <%1 and A are the usual electric and magnetic potentials 
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and r and G are two new potentials. This result (11) and 
(12) may be readily proven to be correct by simply showing 
that Eqs.(11) and (12) yield Eq. (10). In particular, first, 
Eqs.(12) may be substituted into (11); second, all terms may 
be placed under the integral sign; and, third, the del 
operator \i, which operates on r, may be allowed to operate 
on R and R. The resulting integrand is then precisely the 
right side of Eq. ( 10). Since the fixed region of integra-
tion is arbitrary; the direct force representation, Eq.(lO), 
and the field representation, Eqs. (11) and (12), are 
mathematically isomorphic. 

A1 though there is no mathematical restriction on the 
volume over which the integration is taken to define the 
potential field variables , Eqs. ( 12); the physical meaning 
depends upon the choice made. The appropriate choice will 
depend upon the particular physical problem under considera-
tion. For botmded sources an integration over all r'-space 
may be appropriate. 

Frequently the field variables may be found without 
having to perform the integrations indicated in Eqs. (12) 
directly. The integral expressions (12) imply certain 
differential equations and associated botmdary conditions. 
It may be possible to solve the differential equation for 
the field variable. Thus, for example, in electrostatics 
the first of Eqs. (12) for a bounded source p implies an 
electrostatic potential cfJ that is a solution to Poisson's 
equation, 

V 2 cfJ = - 4n p , (13) 

subject to the conditions that cfJ and Vcfl are continuous. The 
power of such field theoretic techniques are well known, and 
the subject need not be pursued any further here. 

The expression for the force on a unit volume with 
charge density p and current density J due to a cfl, A, r, G 
field, as given by Eq. ( 11), replaces the Lorentz force of 
the Maxwell theory. The Lorentz · force involves only the 
first three terms on the right and requires only the cfJ and 
A fields. It becomes inmediately obvious that Maxwell 
theory is merely a limited special case of Weber electro-
dynamics where V•A = 0, (aJ/ .:.t)cfl/c is ignored, and the 
expressions involving r and G vanish. 

Once having Weber electrodynamics expressed in terms 
of fields, it may be immediately extended to rapidly varying 
effects and electromagnetic radiation by introducing time 
retardation. This takes into account a finite propagation 
time R/c for an effect to proceed with the velocity of light 



Wtlln Elcctrodyllamla, Part I 449 

c from a source point to the point of observation. In this 
case the potential field is defined by replacing the time in 
Eqs.(12) by the retarded time, 

t* "' t - R/c. (14) 

In particular, the retarded potentials are defined by 

41 = J d 3 r' p'(r',t*)/R, 

f = f d 3 r'R•J' (r', t*)/cR, 

A= J d3 r'J(r' ,t*)/cR, 
(15) 

G = J d3 r 'Rp' (r', t*)/R. 

The force Eq. (11) is assumed to remain valid when the 
retarded potential field, Eqs. (1 5), is introduced. It may 
be readily shown that these field variables are solutions to 
appropriate wave equations with the phase velocity c. For 
example, the retarded electric potential satisfies the wave 
equation 

(16) 

Although from time to time there have been attempts to 
introduce time retardation directly in force laws between 
two particles without an intermediate field [5]; these 
attempts have not been successful. The only way to 
introduce time retardation is apparently via fields! 

Without time retardation the field variables for an 
action at a distance theory may be regarded as merely a 
convenient mathematical representation of the direct 
interaction between particles. But once time retardation 
is introduced a very different physical interpretation 
becomes necessary. In this case the field must be viewed 
as having a true physical existence all its own, capable of 
transmitting energy and momentum. For example, light, as 
electromagnetic radiation, makes the independent existence 
of fields evident, quite apart from original sources or 
final sinks. 

A further modification is needed to include the effect 
of absolute space or the lumeniferous ether. The velocity 
of energy propagation of electromagnetic waves is known to 
be c fixed with respect to absolute space from the observa-
tions of Roener [6 J, Bradley [7] , Sagnac ( 8] , Michelson and 
Gale [91, Conklin {10, 11], Marinov with his coupled mirrors 
experiment [12], and Marinov with his toothed wheels experi-
ment [13]. The Michelson-Morley result [14] was predicted by 
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Voigt (1 5] in 1887 as a nonclassical Doppler effect using 
absolute space and time. As shown by Wesley [2, 16], the 
Voigt-Doppler effect for an observer moving with the 
absolute velocity v 0 in the positive x direction and source 
moving with the absolute velocity v 5 is given by 

Y0 (C x - Vo)ex + Cyey + Czez 
k' = k 5 -------------

CY5(1 - Yo ·c/c 2 )(1 - V5 ·c/ c2 ) 

W' = W5 Yo(1 - V0 •C/C2 )IY5 (1 - V 5 •C/C2 ), 
(17) 

c* = c - v , 

where k' is the observed propagation constant, k 5 = w5 /c 
where w s is the angular frequency of the source, c' is the 
observed phase velocity, c* is the observed velocity of 
energy propagation, e., ey, and ez are unit vectors in the 
cartesian coordinate directions, Yo = 1/,/1 - and Ys = 
1/,/1 - and w' is the observed angular frequency. The 
motion of the source only modifies the frequency and wave-
length of emitted radiation as a function of direction. The 
light, once elliJiitted, then propagates without change with 
the fixed velocity c with respect to absolute space. The 
major effect arises from the motion of the observer with 
respect to absolute space. For most purposes Eq.(14) for the 
retarded time need only be modified by replacing c by the 
phase velocity c'; thus, 

(18) 

to take into account this effect of the motion of the 
observer with respect to absolute space. 

4. MAXWELL ELECTRODYNAMICS 

According to Maxwell electrodynamics [17-19] the force 
on an element of volume d 3 r at r containing a charge and 
current density p and J is given by the Lorentz force 

d 3F"/ d' r ,. -pVct>- poA/ atc + Jx(VxA) / c, {19) 

where the scalar and magnetic potentials ell and A are defined 
by the first two of Eqs.(12). Corrbining Eqs.(19) and {12) 
the Maxwell-Lorentz force on a voltune element d3 r at r with 
charge and current densities p and J due to a volume element 
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d'r' at r' with charge and current densities p' and J' is 

czd6f" /d'rd3 r' = c 2pp'R/R3 - p(aJ' /at)/R 
(20) 

In terms of moving charges, the Maxwell-Lorentz force on a 
charge q with velocity v at r due to a charge q' with 
velocity v' at r' is given by (21) 
clfM = qq' (c2 R/R3 - (dv' /dt)/R - (V•V' )R/R3 + (R•V)V' /R3 ), 

'Jhese Eqs. (20) and (21) may be ccmpared with the correspond-
ing Weber expressions given by Eqs.(10) and (3). Time 
retardation has been neglected here; Eqs. (20), (21), (10), 
and (3) all refer to slowly varying effects. 

It may be seen from the second and fourth terms on the 
right of Eq. (21) that the Maxwell-Lorentz force between two 
point charges violates Newton's third law; as these forces 
do not act along the line R joining the two charges, and 
interchanging primes and unprimes does not yield merely a 
change in sign. It should be remarked that a failure to obey 
Newton's third law is a very serious matter; as it implies 
drastic consequences, such as the violation of the conser-
vation of energy, the ability to propel ;,1 space craft using 
only forces internal to the space craft itself, and the 
ability to lift oneself by ones own boot straps. Even a 
casual glance at Eq. (21) is, thus, sufficient to show that 
the Maxwell theory cannot be based solely upon the forces 
between isolated point charges, in contrast to the Weber 
theory. In addition, as will be shown below, Eqs. (20) and 
(21) do not agree with the experimental evidence. The Maxwell 
theory, being incapable of prescribing the correct force 
between two 100ving point charges, cannot be regarded as a 
fundamental theory. The special situations and limiting 
conditions under which the Maxwell theory works are outlined 
below in Section 4.3. 

4.1. The Biot-Savart law 
The Biot-Savart law, involving the force between 

steady current elements, is given by the last two terms on 
the right of Eq. (20) or (21); thus, in terms of linear 
current elements 

(22) 

As is well known, this law (22) violates Newton's third law. 
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Grassmann l20] (who apparently was the first to propose the 
Biot-Savart law) justified the law as follows: 1) It is 
mathematically simpler than Ampere's law (6). 2) It yields 
precisely the same result as the Ampere law (6) when the 
source current I 'ds' is integrated around a closed current 
loop; and, thus, it obeys Newton's third law for the net 
force on an entire closed current loop. And 3) all currents 
necessarily fonn closed current loops. 

Considering Grassmann's first point, it is not at all 
apparent that the Biot-Savart law is mathematically simpler; 
in sane instances it yields greater mathematical difficul-
ties. Considering Grassmann's second point, i.f the Ampere 
and Biot-Savart laws were equivalent (which they are not), 
the Ampere law, obeying Newton's third law from the outset, 
should be chosen in preference to the Biot-Savart law, which 
violates Newton's third law and can only satisfy Newton's 
third law after being integrated around a closed current 
loop . Grassmann's third point is drastically in error; not 
all currents form closed current loops. For example, the 
current in an open ended wire antenna (e. g., an electric 
dipole antenna) flows out and back and does not flow in a 
closed current loop. Isolated moving point charges do not 
in general form closed current loops (e.g., the electrons 
in a cathode tube). In addition, it is the mechanical. fDr'ce 
that must be integrated around a closed current loop to make 
the Biot-Savart law satisfy Newton's third law for the whole 
loop; the existence or nonexistence of a closed current loop 
is, thus, not necessarily relevant. 

Ampere [4] recognized this point. He demonstrated this 
with the force on a hairpin shaped wire (the Ampere bridge) 
with ends making electrical contact in two troughs with 
mercury as shown in Fig. 1 . The bridge is repelled down the 
troughs when current is sent through the bridge. A1 though a 
closed current loop is involved; the net force on the bridge 
is obtained by integrating the elements of force only over 
the bridge and not around the entire current loop. The 
.Ampere bridge is propelled by the · repulsive forces between 
colinear current elements, as given by Ampere's law (6). No 
such force is predicted by the Biot-Savart law (22); as the 
force on a current element is suppose to be always normal to 
the element. The Ampere tension or repulsion between 
co linear current elements also accounts quantitatively for 
the force necessary to rupture current carrying wires, as 
observed by Graneau (21-23]. The Ampere repulsion accounts 
for the force that drives the Graneau-Hering submarine (24, 
25]. The Ampere repulsion yields the force that drives the 
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Force 

.. 

Fig. 1 . Diagram of the experiment Ampere performed to refute 
the Biot-Savart law. The force on the bridge when current 
flows is in the di rect.ion indicated. 

in Hering's pump l25]. And the Ampere tension drives 
the oscillations in Phipps • mercury wedge [26] . 

It may be readily demonstrated that the Biot-Savart 
law is abaurd [271. The Biot-Savart law predicts a net 
nonvanishing self force on a closed current loop. Dividing a 
current carrying loop mathematically into two portions 1 and 
2, the element of force on a current element Ids on portion 
1 (due to a current element Ids') plus the element of force 
on current element Ids' on portion 2 (due to a current 
element Ids), as given by Eq.(22), may be integrated to give 
the total self force on the current loop as 

czF8 = Pj J {(dsx (ds' xR))/R3 - (ds' x(dsxR)/R3 } 
I 2 (23) 

= - P J J R x (ds xds' )/R3 • 

I 2 
Depending upon how one chooses portions 1 and 2, one can 
obtain a nonvanishing force with any value at all (within 
limits). Such a loop would be very convenient to drive an 
auto100bile or propel a space ship. One could obtain the 
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desired magnitude of the force without having to change 
anything physically; one need only alter the mathematical, 
labels. In addition, using the criteria that Grassmann 
provides, that the force between elements when integrated 
around a closed current loop should yield the Ampere result 
a completely equivalent "Biot-Savart law" is given by ' 

(24) 

where ds and cis' are interchanged as compared with Eq. (22). 
Using this equivalent "Biot-Savart law" the net self force 
on a closed current loop becomes the negative of Eq. (23). 
The absur-dity is complete. 

4.2. Faraday's law of electromagnetic induction 
The Maxwell-Lorentz force on a charge due to a time 

changing current or an accelerating charge, the second term 
in Eq. (20) or (21), does not obey Newton's third law. Thus, 
the Maxwell-Lorentz theory again fails; it cannot predict 
correctly the force between a stationary and an accelerating 
charge. However, it can predict the correct electromotive 
force around a closed loop due to another closed loop with 
current changing with time, the Faraday law of electro-
magnetic induction; thus, fran Eq. (19), where B = V xA, 

(25) 
emf=- rfi ds·oA/otc =- (8/at)Jdan·B/c = 

This integral result (25) satisfies Newton's third law. 
Again, as for the Biot-Savart law, it is a matter of 
integrating an incorrect formula around a closed loop to get 
a correct result. This result (25) is identical to the Weber 
result (9). 

The Maxwell-Lorentz theory is completely incapable of 
predicting localized unipolar induction (discussed in part 
II). The Weber theory, on the other hand, easily predicts 
all of the experimental results. • 

4 . 3. Limitations of the Maxwell theory 
Fran the discussion above (and to follow) it may be 

seen that for slowly varying effects the Maxwell theory is 
valid only for limited situations where: 

1) The interaction between moving point charges must 
not be involved. Maxwell theory does not provide valid 
expressions for the interaction between moving point charges 
in submicroscopic systems, such as needed to substitute into 



Weber Eleclrodynamlt,, Pari I 455 

Schroedinger's equation to obtain valid quantLUn theoretic 
predictions. 

2) Macroscopic quantities of material and macroscopic 
of charge must always be assumed. 

3) A source must be confined to a finite volume, and 
it must vanish on the surface of this volume. 

4) A detect or must be confined to a finite volume, 
\lflere source and detector do not occupy the sane volLUne. 

5) As limitations 3) and 4) imply, source currents 
must form closed current loops so that V·A = r = 0. 

6) The force on an accelerating charge or time varying 
current due to a static charge distribution must not be 
involved. 

7) Induction must be limited to closed current loops 
due to the net time rate of change of the magnetic flux 
through the loop. 

8) Induction in only a portion of a closed loop cannot 
be involved. 

9) Induction in open circuits cannot be involved. 
In contrast, the Weber theory, being a fundamental 

theory based upon the interaction between two moving 
charges, appears to have no limitations at all. 

5. DETERMINATION OF THE FORCE ON AMPERE'S BRIDGE 

A crucial experiment that decides between Ampere's 
orginal empirical law (6) for the force between current 
elements and the Biot-Savart law (22) (and, thus, helps to 
decide between the Maxwell theory and the Weber theory) 
involves the measurement of the force on Ampere 1 s bridge 
indicated in Fig. 1. Ampere [4), Cleveland [28], Robertson 
[29], Pappas [30,31], and Graneau [32-341 have shown that the 
bridge is repelled by the remainder of the circuit, as would 
be expected by Ampere's law. But these earlier experiments 
yielded no adequate quantitative measurements. 

The difficulties in obtaining quantitative results 
have been both experimental and theoretical. A valid 
expression for the force on Ampere's bridge derived fran 
Ampere's law, given by Eq. (26) below, that can be compared 
quantitatively with experiments has only been recently 
available. And it has only been recently that Moyssides and 
Pappas (35] and Peoglos [36] (analyzed by Wesley [371) have 
been able to get quantitative results for the force on 
Ampere's bridge that can be adeqautely compared with the 
theory. The theoretical difficulties in the past (28-34] 
arose from using Ampere's law written for linear current 
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elements, Eq.(6). This linear form yields an infinite force 
when two colinear current elements are brought together, the 
force varying as the inverse square of the separation 
distance. This infinite force arises fran having assumed 
infinite current densities, finite currents I and I' being 
carried by wires of vanishing cross section. The empirically 
correct formula 11l.1St involve the volume current densities· 
thus, instead of Eq. (6), the Ampere force should be 
from the second and third terms of Eq.(lO), 

= (R/R3 )( -2J·J' + 3(J·R)(J'•R)/R2). (26) 

It may be readily shown that integrating this empirically 
correct Ampere's law (26), using continuous finite current 
densities J and J', can yield no infinities, in agreement 
with observations. 

S. 1. Force on bridge with straight ends from 
Ampere's law 

The force on Ampere's bridge with straight ends with 
the geometry shown in Fig. 2 has been calculated l3l by 
performing all 6 of the integrations indicated in Eq.(26). 
The analysis is lengthy but straightforward. All integra-
tions yield expressions in closed form. When the width w 
is equal to the laminar thickness and is small, the magni-
tude of the force is given by 

(27) 
c2 FA/2I2 = C + + - ln(l + + L2 fM2 ) + ln(L/w), 

where C = 13/12 - n/3 + (2/3) ln 2 = 0.49822... , and the 
dimensions L, M, N, and w are indicated in Fig. 2. 

The lower portion of the circuit diagrammed in Fig. 2 
also forms an Ampere bridge. The force on this lower portion 
is given by merely changing the sign of Eq.(27) and 
replacing N by M - N. Since N does not occur, the force on 
the lower portion is simply the negative of Eq. (27). The 
net force on the current loop is, ·thus, zero; and Newton's 
third law is satisfied. 

5. 2. Force on bridge with straight ends from 
Biot-Savart law 

For wires of finite cross section the Biot-Savart law 
must be written in terms of current densities. From the last 
two terms of (20) or from (22) the appropriate form of the 
Biot-Savart law is 

c2 d6F8 /d3 rd2 r' = Jx(J' xR)/R3 • (28) 
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FORCE 

BRIDGE 
w +--

T M 

N 

la,..._____ 
L ,., 

Fig. 2. Diagram of Ampere's bridge with straight ends 
showing the dimensions L, M, N, and w. 

Carrying out the 6 ne<:essary integrations for the Ampere 
bridge with straight ends as diagrammed in Fig. 2, the Biot-
Savart law predicts a force on the bridge, when the width w 
is equal to the laminar thickness and is small, given by 

c1 F8 /ZP = - 1 + + V/W - Ln (1 + -v"i'7L2 /W] 
(29) 

+ ln(1 + + L2 /(M- N)i]. 

This result (29) is quite different from the Ampere result 
(27); as may be readily seen for the case where LIM and 
L/(M- N) 0. In this case the Ampere result is large and 
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varies as tn (L/w); while the Biot-Savart result becanes 
zero. The strong repulsive force observe (4,25,28-34) is in 
agreement with the Ampere prediction. The experimental. 
observations do not agree with the weak or zero .Biot-Savan 
prediction. 

Actually, this result (29) is absUPd: From synmetry 
the lower portion of the circuit diagrantired in Fig. 2 also 
fonns an Ampere's bridge which should also experience a 
Biot-Savart force given by changing the sign of Eq. (29) and 
replacing M - N by N. Adding these two forces the net Biot-
Savart force on the entire circuit is then suppose to be 
nonzero and equal to 

c2 Fanet/2P = tn(1 + .J1 + L2 /(M -NP] - tn(l 
(30) 

Newton's third law is not obeyed. This force (30) could be 
used to lift oneself by ones own boot straps, to violate 
conservation of energy, etc. This result (30) is a specific 
example of the absur>dity already demonstrated above by Eqs. 
(23) and (24). 

5. 3. Force on bridge wi tb bent ends from the 
Ampere law 

Moyssides and Pappas [35) also measured the force on 
Ampere's bridge with bent ends, as shown in Fig. 3. Using 
Ampere's law as given by Eq.(26), the 6 integrations may 
again be carried out in closed form. When the width w equals 
the laminar thickness and is small, the force on the bridge 
is given by 
c2 FA/2P = lrz((L-P)/P) + lrz(Q/(Q-P)) + -v''f"+Q2 /N2 

- F+Qi7W + -vT"+ Ql/tM--NP - .J1 + CL -QP/Ni 
+ v'1 + (L- Q)2 /W - ..J1 + (L -·QP /(M- N)Z - .J1 + P2 /N2 

- v'1 + (Q- P)2/(M- NP + Fl.+ (L- Q- P) 2 / (M -N) 2 

+ .J1 + (L - P) 2 /N 2 - Zrz (CL - Q)/ .(L - Q- P)) (31) 

+ l.nr.1 + v'1 + (L-Q)2/N2
] _ tn[1 + .J'1 + (L-Q)2 /Wl 

L 1 + .J1 + Q2 /N 2 1 + -./1 + Q2 /M2 

_ t,tll + .J'1 + (L-P)2/N2l- tnf 1 + .J1 + Q2 /(M-N)2 J 
L 1 + .Jl + P2 /N2 ll + .J1 + (Q-P)2/(M-NP 

+ z.nr.l + .J1 + (L-Q)2/(M-N)2 J. 
b + -v'l + (L-Q-PP/(M-NP) 
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FORCE 

BRIDGE 
w 

M 1 
N 

J 
L 

Fig. 3. Diagram of Ampere's bridge with bent ends showing 
the dimensions L, M, N, P, Q, and w. 

Although this result (31) is lengthy with S parameters; 
numerical results may be readily computed to conpare with 
experiment. 

S. 4. Experimental results for force on bridge 
with straight ends 

The theory assumes a rectangular cross section for the 
wire used; whereas Moyssides and Pappas [35] actually used 
wires of circular cross section. To an adequate approxima-
tion the small cross-sectional areas may be equated; or 

w = -Jji d/2, (32) 
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• • 

1.6 2.0 2.4 2.8 3.2 

d (mm( 

Fig. 4. Force on Anpere' s bridge with straight ends, the 
theory (solid curve), Eq.(33), compared with experimental 
points. 

where d is the diameter of the circular wire used. Moyssides 
and Pappas used L = 48 em and M = 120 an. They used units 
of gram weight for the force FA; so Eq. ( 27) must be divided 
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by the acceleration of gravity 980.0 an/sec 2 • They used 
units of ampere for the current instead of electrostatic 
units; so Eq.(Z7) rust also be rultiplied by c 2 /100. Using 
Eq. (32) and the above facts, Eq. (27) yields the theoretical 
formula 

FA/P = (14.569- 2.0408 tnd) xw-5, (33) 

where FA is the force in gram weight units, I is the current 
in amperes, and d is the wire diameter in millimeters. This 
theoretical result (33) is plotted in Fig . 4, where it is 
coO¥>ared with the experimental points of Moyssides and 
Pappas l35j (as presented in their Fig. 3). 

5. 5. Experimental results for force on bridge 
with bent ends 

For the case of 1 an bent ends Q - P • 1 em, L = 52 
on, P = 1 em, M = 120 an, and N = 43 em Moyssides and Pappas 

report a force on the Ampere bridge per current squared 
of 7.04 ± 0.14 x w-5 gm weight/amp2 , where the error has 
been estimated from their Fig. 11. Substituting the 
dimensions reported by Moyssides and Pappas into Eq. (31) 
yields the theoretical prediction of 9.500 x 10-5 gm 

Similarly for the case of 2 em bent ends where 
Q - P = 2 em, L = 54 em, P = tan, M = 120 an, and N = 43 an 
lobyssides and report a force per current squared of 
6.06 :t 0.12 x 10- gm weight/amp2 • The theoretical predic-
tion in this case fran Eq.(31) is 9.019xlo-5 gm weight/amp2• 

Results are summarized in Table 1. 

Table 1. Force on Ampere•s bridge with bent ends 
(gm weight/amp2 ) x w-5 

length of bent ends 

1 em 
2 em 

experiment 

7.04 ! 0.14 
6 .06 :t o. 12 

theory, Eq. (31) 

9.500 
9.019 

5. 6. Discussion concerning the measurement of 
the force on Ampere's bridge 

Examining Fig. 4 and Table 1, it may be seen that the 
predicted force exceeds the force reported by Moyssides and 
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Pappas by about 2. 4 x 10-5 gm weight/ amp2 or 20 pe:c:nt. 
Considering the well established success of the ong1na]. 
Ampere law (6) or (26) in accurately predicting a vast 
amount of experimental data where the force on a closed 
current loop is involved (the Maxwell case), a reason must 
be sought for the discrepancy. The discrepancy is found to 
behave in a very regular way. For all 11 observations of the 
force on Alt1>ere' s bridge as a function of the wire diameter 
for the case of straight ends, as well as for the case of 
bent ends, the discrepancy tJ. = (theory) - (experiment), is 
given quite accurately to within the experimental error by 

= 4.57 - 0.2(FA/I 2 )(theory), (34) 

in (gm weight/amp2 ) x w- 5 • Since this result (34) is 
independent of the many independent variables, the shape and 
dimensions of the circuit and the diameter of the wire; 
there must be a systematic error involved in the measurement 
of the force FA and or else the current I. Since it seems 
unlikely that there could be any systematic error involving 
the current I; only the measurement of the force FA comes 
into question. The systematic error might arise fran 
phenomena in the mercury cup. The current may spread out in 
the cup, thereby reducing the force. Surface tension of the 
mercury may restrain the free motion of the bridge, 
resulting in apparent smaller forces. The fractional effect 
of surface tension should be greater the smaller the forces, 
as is observed. 

Since the discrepancy, Eq. (34), does not depend upon 
the expression used, Eq.(27) or (31), nor upon the variation 
of the parameters; it may be legitimately used as a 
correction. Making this correction, it is concluded that 
Moyssides and Pappas [35] confirm Ampere's force law (6) or 
(26) quantitatively to within about 2 percent. Even without 
the correction they confirm Ampere's law quantitatively to 
within about 20 percent error. 

Peoglos [36] (analyzed by Wesley l37]) reports 
observing the force on Ampere's bridge in agreement with 
Ampere's law to within 2 percent accuracy. 

6. AMPERE REPULSION AND GRANEAU'S EXPLODING WIRES 

Graneau [21 ,22] reports the breaking of wires (and 
liquids (23]) when loaded with large currents. He attributes 
this explosion of wires (and liquids) to the .Ampere 
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repulsion between colinear current elements. He was unable 
to obtain a valid theoretical estimate of the tension, as 
he used the linear form of Ampere's law (6) and had to 
introduce an arbitrary nonvanishing distance. The present 
paper derives for the first time a valid theoretical 
estimate of the Ampere tension available to rupture a 
current carrying wire using the three dimensional form of 
.Ampere's law ( 26). This valid theoretical estimate supports 
Graneau's claim that the wires rupture due to Ampere 
repulsion between colinear current elements. 

The force on Ampere's bridge due to the remainder of 
the circuit obtained by integrating Eq.(26) for the geometry 
shown in Fig. 2 is given by Eq.(27). This force is 
independent of where the mercury cups occur along the sides 
of length M (shown as gaps in Fig. 2). To estimate the 
Ampere tension T for Graneau' s setup a square circuit 
(without cups) may be considered, where L = M; thus, 
fran Eq. (27) 

T = (P/c2 ) lC' + ln(L/w)), (3S) 

where C' = 13/12 + -,12- n/3 + (2/3) Z.n 2 - Z.n (1 + -v'i) = 
t .0311... . The tension in a circular loop may then be 
approximated by a square circuit of same area. A wire of 
circular cross section may be approximated by a wire of 
square cross section of the same area, Eq. (32) . The tensile 
stress created by Ampere repulsion in a circular loop of 
diameter D carrying a current I in a wire of circular cross 
section of diameter d may then be approximated as 

S = 4T/nd2 = (4P/c 2 nd2 ) (1.0311 + ln(D/d)). (36) 

6.1. Ampere stress needed to break the wire 
Graneau [21 J considers the case of the breaking of a 

current carrying straight wire of diameter d = 1 mn and 
length L = 1 SO em carrying a current of I = 104 amp. 
Approximating this case by a circular circuit of diameter 
D = 2L/-v'il = 169 em, Eq. (36) yields the estimatt- Lhe 
Ampere tension in the wire as 8.64 kgm, or an Ampere tensile 
stress of 11.0 kgm/nun2 • This is about 1 /4th the tensile 
stress needed to break cold copper; but it is undoubtedly 
sufficient to impulsively break copper weakened by Joule 
heating. 

Graneau [21] also considers the case of a curved 
circuit which may be approximated by a circle of diameter 
D = SO em of 99% pure aluminium wire of diameter d = 1. 2 nun 
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carrying a current of I = 5 x 103 amp. According to Eq. (3fi 
the Ampere tensile stress in the wire is 2.29 kgm/nun2. ThJ 
is about 1/9th the tensile stress needed to break COld 
alumim.un; but it is t.mdoubtedly sufficient to impulsively 
break aluminum greatly weakened by Joule heating . 

6.2. Discussion concerning exploding wires 
The microscopic appearance of the clean right angle 

breaks that Graneau obtains indicate that rupturing occurs 
as a result of impulsive tensile loading and that no radial 
pinch effect, which would have yielded a necking-down, COUld 
be responsible for the observed ruptures. 

It is sometimes speculated that the explosion of wires 
carrying large currents is due entirely to Joule heating of 
occluded gases on grain boundaries of the metal. A1 though 
this mechanism may contribute to the weakenning of the 
tensile strength of metals; it cannot account for the 
explosion. No alternative methods of heating, such as 
microwaves, even to melting, have ever been observed to 
produce such explosions in metals. If it were merely a 
matter of Joule heating, rupturing in the radial direction 
should also be observed; and radial rupturing providing less 
resistance to expansion would seem to be preferred. If the 
effect were due to Joule heating, the ends of the broken 
wires should be ragged and should show signs of melting 
instead of showing clean right-angle breaks indicating 
impulsive tensile loading. In addition, Graneau's [23] 
observation of ruptures in liquids due to Ampere tnesion 
cannot be attributed to Joule heating of occluded gases on 
grain boundaries . 

Ampere tension is the only force available to give 
rise to the observed tensile ruptures. The magnitude of the 
Ampere tension estimated here is of the correct order of 
magnitude to account for the ruptures observed. If sore 
weakenning by Joule heating is assumed, the match between 
theory and experiment is adequate. The absence of data on 
the rupture strength of metals as a function of temperature 
and the absence of the temperature of the wires when 
exploding make it impossible to check this point. In 
conclusion, Graneau' s claim that his wires carrying large 
currents break due to Ampere tension is undoubtedly correct. 

7. GRANEAU-HERING SUBMARINE AND HERING'S PUMP 

Hering 
experiments 

[25] perfonned 
that he claimed 

a number 
could not 

of 
be 

interesting 
adequately 
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lained by traditional Maxwell theory. Among these 
is the propulsion of a wedge-shaped piece of 

copper, or "submarine", when laid in a trough of current 
carrying mercury. Graneau [24] repeated this experiment and 
ascribed the propelling force to the repulsion between 
colinear current elements given by Ampere's original force 
JaW (6) or (26). Graneau did not derive a theoretical 
expression for the forc e on the submarine; nor did he 
peasure the force quantitatively . The present paper derives 
for the first time an estimate of the force on the Graneau-
Hering submarine from Ampere's original force law. 

Hering [25] also performed an experiment in which 
mercury is pumped uphill from a central reservoir into a 
narrow current carrying channel where the mercury then flows 
in two opposite directions into large reservoirs at either 
end of the narrow channel. The electric current flows in 
only one direction down the narrow channel ; the effect 
is independent of the direct ion of the current flow. In 
principle, this experiment again demonstrates the propulsive 
force on a current carrying metal wedge . In this case the 
wedge is formed by the mercury fran the narrow channel 
toward the large reservoirs. The theory derived here for the 
Graneau-Hering submarine is, thus, equally applicable to 
Hering's pump. 

The result (27) or (35) yields the Ampere tension as 
proportional to the logarithm of the ratio of the size or 
Mameter of the circuit to the size or diameter of the wire. 
The size of the wire enters in from the integration of Eq. 
(26) only in the neighborhood of the point where the tension 
is calc.:ulated. Away fran this point the size of the wire is 
a matter of indifference in the integrations when the size 
of the wire is small canpared with the other dimensions of 
ilie circuit. For the Graneau-Hering submarine, assuming that 
all of the current is funnelled through the higher conduc-
ting copper submarine, the tension, or force, T1 at the rear 
end of width w1 of the submarine is 

(37) 

where c" is a constant, which may be obtained from Eq . (27) . 
The tension or force at the fotward end of width w2 > w1 is 

(38) 

Asswning w 2 and w 1 are small compared with the other 
Mmensions of the circuit, the net force F to propel the 
submarine is simply 
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(39) 

This force propels the submarine in the direct ion of the 
broader end as observed. 

Tilis result {39) may also be used to obtain the force 
on the mercury in Hering's pump. 

8. AMPERE TENSION IN PHIPPS' MERCURY WEDGE 

The observed results of Graneau l24] and Hering {25] 
for the force on the Graneau-Uering submarine and the force 
to drive the Hering pump have only been qualitative. An 
appropraite quantitative prediction of this force (suggested 
by Wesley [38]) using Ampere's law, as given by Eq.(27) or 
by Eqs. (37) and (38), should be possible by measuring the 
pressure difference between the ends of a wedged shape 
container of current carrying mercury as indicated in 
Fig. 5. The difference in tension per unit area, the 
pressure, can be determined by the difference in the height 
6h to which the mercury rises in the two columns indicated 
in Fig. s. Since the static pressure in the mercury must be 
the same throughout; the mercury will rise on the end of 
width w 2 , where the internal !lmpere pressure is less to 
match the higher Ampere pressure at the other end of width 
w1 ; thus, 

wl 

Fig. S. Phipps' experiment to measure Ampere tension by 
measuring the pressure difference between the ends of a 
wedged shaped container of current carrying mercury. 
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pH9g6h"' (P/c2 wp(c• + Z.n(L/w1)) 

- (P (c• + Z.n(L/w2 J), 
(40) 

PHg is the density of mercury, g is the acceleration 
of gravity, and C" is a constant that can be obtained fran 
Eq . ( 27). 

Phipps (26] has performed this experiment using a 
slowly alternating current to set the mercury columns into 
oscillation. He observes mechanical oscillations of twice 
the electrical excitation, as would be expected fran the 
.Ampere driving tension varying as the current squared I z. 
A rocking mode, one column up when the other is down, is 
observed, as would also be expected from the Ampere on-off 
tension. A satisfactory approximate quantitative confirma-
tion of Eq. (40) is obtained under the assumptions that: 
1) About one-third of the mercury mass present participates 
in mechanical oscillations. 2) For the micron-sized oscilla-
tions observed the restoring force of gravity is augmented 
(two or three-fold) by surface stretching forces associated 
with the surface tension of mercury. And 3) the "Q" of the 
rechanical resonance is lowered by sane unidentified form 
of energy dissipation much greater than that attributable to 
rercury viscous friction against the vessel walls. 
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